|
|
- from . import script
- from . import queries
- import dimod
- import random
- import numpy as np
-
- from tqdm import tqdm
-
- def extract_wmis_qpu_results():
- edb = script.connect_to_experimetns_db()
- edb_cursor = edb.cursor()
-
- idb = script.connect_to_instance_pool()
-
- scope = input("scope: ")
- result_collection = input("result collection: ")
-
- table_name = input("table name: ")
-
- q = queries.WMIS_result_scope_query_raw(idb)
- q.query(scope, result_collection)
-
- insert_row = ("INSERT INTO {} "
- "(result_id, "
- " run, "
- " instance_id, "
- " number_of_found_assignments, "
- " chain_break_fraction, "
- " num_occurrences, "
- " energy, "
- " satisfiable, "
- " anneal_time, "
- " energy_reach, "
- " sample_size) "
- "VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s) ").format(table_name)
-
- run = int(input("run: "))
-
- for result in tqdm(q):
- if result["run"] == run:
- sample_set = queries.read_raw_wmis_sample_set(result["data"])
-
- data = script.analyze_wmis_sample(sample_set.first)
-
- sat = queries.get_instance_by_id(idb["instances"], result["instance"])
-
- model = script.majority_vote_sample(sample_set.first.sample)
-
- isSatisfiable = sat.checkAssignment(model)
-
- anneal_time = result["data"]["info"]["timing"]["qpu_anneal_time_per_sample"]
-
- energy_reach = abs(sample_set.record["energy"].max() -
- sample_set.record["energy"].min())
-
- sample_size = np.sum(sample_set.record["num_occurrences"])
-
- edb_cursor.execute(insert_row, (str(result["_id"]),
- int(result["run"]),
- str(result["instance"]),
- int(data["number_of_assignments"]),
- float(data["chain_break_fraction"]),
- int(data["num_occurrences"]),
- int(data["energy"]),
- isSatisfiable,
- int(anneal_time),
- int(energy_reach),
- int(sample_size)))
-
- edb.commit()
- edb_cursor.close()
- edb.close()
-
- def extract_wmis_2_qpu_results():
- edb = script.connect_to_experimetns_db()
- edb_cursor = edb.cursor()
-
- idb = script.connect_to_instance_pool()
-
- scope = input("scope: ")
- result_collection = input("result collection: ")
- table_name = input("table name: ")
-
- q = queries.WMIS_result_scope_query_raw(idb)
- q.query(scope, result_collection)
-
- insert_row = ("INSERT INTO {} "
- "(result_id, "
- " run, "
- " instance_id, "
- " chain_break_fraction, "
- " num_occurrences, "
- " energy, "
- " satisfiable, "
- " anneal_time, "
- " energy_reach, "
- " sample_size) "
- "VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s) ").format(table_name)
-
-
- run = int(input("run: "))
-
- for result in tqdm(q):
- if result["run"] == run:
- sample_set = queries.read_raw_primitive_ising_sample_set(result["data"])
-
- data = script.analyze_wmis_sample(sample_set.first)
-
- sat = queries.get_instance_by_id(idb["instances"], result["instance"])
-
- post_process_results = __evaluate_wmis_2_sample(sat,
- sample_set.first.sample)
-
- anneal_time = result["data"]["info"]["timing"]["qpu_anneal_time_per_sample"]
-
- energy_reach = abs(sample_set.record["energy"].max() -
- sample_set.record["energy"].min())
- sample_size = np.sum(sample_set.record["num_occurrences"])
-
- edb_cursor.execute(insert_row, (str(result["_id"]),
- int(result["run"]),
- str(result["instance"]),
- float(data["chain_break_fraction"]),
- int(data["num_occurrences"]),
- int(data["energy"]),
- bool(post_process_results["satisfiable"]),
- int(anneal_time),
- int(energy_reach),
- int(sample_size)))
-
- edb.commit()
- edb_cursor.close()
- edb.close()
-
- def __evaluate_wmis_2_sample(sat, sample):
- post_process_results = {}
-
- assignments = {}
- vars = set()
-
- for node, energy in sample.items():
- if node[0] == "x":
- lit = int(node[1:])
-
- vars.add(abs(lit))
-
- assignments[lit] = energy
-
- model = [True for i in range(len(vars))]
-
- for var in vars:
- if var in assignments:
- model[var - 1] = True if assignments[var] == 1 else False
- elif -var in assignments:
- model[var - 1] = True if assignments[-var] == 0 else False
-
- post_process_results["satisfiable"] = sat.checkAssignment(model)
-
- return post_process_results
-
- def extract_minisat_results():
- edb = script.connect_to_experimetns_db()
- edb_cursor = edb.cursor();
-
- idb = script.connect_to_instance_pool()
-
- scope = input("scope: ")
- table_name = input("table name: ")
-
- runs = queries.Minisat_run_scope_query_raw(idb)
- runs.query(scope, "minisat_runs")
-
- insert_row = ("INSERT INTO {} "
- "(run_id, "
- " instance_id, "
- " satisfiable) "
- "VALUES (%s, %s, %s) ").format(table_name)
-
- for run in tqdm(runs):
- data = script.analyde_minisat_run(run)
-
- edb_cursor.execute(insert_row, (str(run["_id"]),
- str(run["instance"]),
- int(data["satisfiable"])))
-
- edb.commit()
- edb_cursor.close()
- edb.close()
-
- def extract_instance_parameters():
- edb = script.connect_to_experimetns_db()
- edb_cursor = edb.cursor()
-
- idb = script.connect_to_instance_pool()
-
- scope = input("scope: ")
- table_name = input("table name: ")
-
- instances = queries.Instance_scope_query(idb)
- instances.query(scope)
-
- insert_row = ("INSERT INTO {} "
- "(instance_id, "
- " number_of_clauses, "
- " number_of_variables) "
- "VALUES (%s, %s, %s)").format(table_name)
-
- for instance, instance_id in tqdm(instances):
- edb_cursor.execute(insert_row, (str(instance_id),
- int(instance.getNumberOfClauses()),
- int(instance.getNumberOfVariables())))
-
- edb.commit()
- edb_cursor.close()
- edb.close()
|