import configparser import os import argparse import pymongo import ssl import mysql.connector import networkx as nx from . import queries from . import graph from . import SAT2QUBO import minorminer from tqdm import tqdm import numpy as np import random import sys def readConfig(configFilePath): config = configparser.ConfigParser() if os.path.isfile(configFilePath): config.read(configFilePath) return config class ArgParser: def __init__(self): self.__flags = {} self.__parser = argparse.ArgumentParser() self.__instanceDirArgSet = False self.__config = None self.__parsedArgs = {} def addArg(self, alias, shortFlag, longFlag, help, type, default=None, ignoreDatabaseConfig=False): self.__flags[alias] = {"longFlag": longFlag, "hasDefault": False, "ignoreDatabaseConfig": ignoreDatabaseConfig, "type": type} if default != None: self.__flags[alias]["hasDefault"] = True self.__parser.add_argument("-%s" % shortFlag, "--%s" % longFlag, help=help, type=type, default=default) def addInstanceDirArg(self): self.__instanceDirArgSet = True self.addArg(alias="datasetDir", shortFlag="d", longFlag="dataset_dir", help="the base direcotry of the dataset; if this flag is given the others can be omitted", type=str, ignoreDatabaseConfig=True) def parse(self): self.__parsedArgs = {} args = vars(self.__parser.parse_args()) if self.__instanceDirArgSet: self.__config = readConfig(os.path.join(args["dataset_dir"], "dataset.config")) self.__parseDatasetConfig() for alias, flag in self.__flags.items(): self.__parsedArgs[alias] = self.__processFlag(args, flag) self.__config = None return self.__parsedArgs def __parseDatasetConfig(self): for flag, value in self.__config["STRUCTURE"].items(): self.__parsedArgs[flag] = value def __processFlag(self, args, flag): longFlag = flag["longFlag"] tmpValue = self.__parsedArgs[longFlag] if longFlag in self.__parsedArgs else None if flag["ignoreDatabaseConfig"] == True: tmpValue = None if args[longFlag]: tmpValue = args[longFlag] if tmpValue == None: tmpValue = flag["type"](input("pass arguement %s: " % longFlag)) return tmpValue def getDBContext(dbConfigPath): dbContext = {} dbContext["client"] = connect_to_instance_pool(dbConfigPath) dbContext["db"] = dbContext["client"]["experiments"] dbContext["instances"] = dbContext["db"]["instances"] dbContext["experimentScopes"] = dbContext["db"]["experiment_scopes"] return dbContext def connect_to_instance_pool(dbConfigPath = "database.config"): dbConf = readConfig(dbConfigPath) client = pymongo.MongoClient( "mongodb://%s:%s@%s:%s/%s" % ( dbConf["INSTANCE_POOL"]["user"], dbConf["INSTANCE_POOL"]["pw"], dbConf["INSTANCE_POOL"]["url"], dbConf["INSTANCE_POOL"]["port"], dbConf["INSTANCE_POOL"]["database"]), ssl=True, ssl_cert_reqs=ssl.CERT_NONE) return client[dbConf["INSTANCE_POOL"]["database"]] def connect_to_experimetns_db(dbConfigPath = "database.config"): dbConfig = readConfig(dbConfigPath) return mysql.connector.connect( host=dbConfig["EXPERIMENT_DB"]["url"], port=dbConfig["EXPERIMENT_DB"]["port"], user=dbConfig["EXPERIMENT_DB"]["user"], password=dbConfig["EXPERIMENT_DB"]["pw"], database=dbConfig["EXPERIMENT_DB"]["database"] ) def frange(start, stop, steps): while start < stop: yield start start += steps def create_experiment_scope(db, description, name): experimentScope = {} experimentScope["instances"] = [] experimentScope["description"] = description experimentScope["_id"] = name.strip() db["experiment_scopes"].insert_one(experimentScope) def write_instance_to_pool_db(db, instance): instance_document = instance.writeJSONLike() result = db["instances"].insert_one(instance_document) return result.inserted_id def add_instance_to_experiment_scope(db, scope_name, instance_id): db["experiment_scopes"].update_one( {"_id": scope_name}, {"$push": {"instances": instance_id}} ) def write_qubo_to_pool_db(collection, qubo, sat_instance_id): doc = {} doc["instance"] = sat_instance_id doc["description"] = {"": "", "": " | | \"\"", "": "", "": "", "": "", "": "", "": "", "": ""} doc["qubo"] = __qubo_to_JSON(qubo) collection.insert_one(doc) def create_wmis_qubos_for_scope(db, scope): instances = queries.Instance_scope_query(db) instances.query(scope) for instance, instance_id in instances: qubo = SAT2QUBO.WMISdictQUBO(instance) write_qubo_to_pool_db(db["wmis_qubos_2"], qubo, instance_id) def create_wmis_2_qubos_for_scope(db, scope): instances = queries.Instance_scope_query(db) instances.query(scope) for instance, instance_id in instances: qubo = SAT2QUBO.WMISdictQUBO_2(instance) write_qubo_to_pool_db(db["wmis_2_qubos"], qubo, instance_id) def create_primitive_isings_for_scope_2(db, scope): instances = queries.Instance_scope_query(db) instances.query(scope) for instance, instance_id in instances: ising = SAT2QUBO.primitiveQUBO_2(instance) write_qubo_to_pool_db(db["primitive_isings_2"], ising, instance_id) def create_primitive_qubo_for_scope_5(db, scope): instances = queries.Instance_scope_query(db) instances.query(scope) for instance, instance_id in tqdm(instances): ising = SAT2QUBO.primitiveQUBO_5(instance) write_qubo_to_pool_db(db["primitive_isings_5"], ising, instance_id) def create_primitive_qubo_for_scope_8(db, scope): instances = queries.Instance_scope_query(db) instances.query(scope) for instance, instance_id in tqdm(instances): ising = SAT2QUBO.primitiveQUBO_8(instance) write_qubo_to_pool_db(db["primitive_isings_8"], ising, instance_id) def __qubo_to_JSON(qubo): quboJSON = [] for coupler, value in qubo.items(): quboJSON.append([coupler, float(value)]) return quboJSON def write_wmis_embedding_to_pool_db(collection, qubo_id, solver_graph_id, seed, embedding): if not __embedding_entry_exists(collection, qubo_id, solver_graph_id): __prepare_new_wmis_embedding_entry(collection, qubo_id, solver_graph_id) collection.update_one( {"qubo": qubo_id, "solver_graph": solver_graph_id}, { "$push": { "embeddings": { "embedding": __embedding_to_array(embedding), "seed": seed } } } ) def __embedding_entry_exists(collection, qubo_id, solver_graph_id): filter = {"qubo": qubo_id, "solver_graph": solver_graph_id} if collection.count_documents(filter) > 0: return True return False def __prepare_new_wmis_embedding_entry(collection, qubo_id, solver_graph_id): doc = {} doc["qubo"] = qubo_id doc["solver_graph"] = solver_graph_id doc["description"] = {"": "", "": " | \"\"", "" : "", "": " | \"\""} doc["embeddings"] = [] collection.insert_one(doc) def __embedding_to_array(embedding): emb_arr = [] for node, chain in embedding.items(): emb_arr.append([node, chain]) return emb_arr def write_solver_graph_to_pool_db(collection, graph): data = nx.node_link_data(graph) id = queries.get_id_of_solver_graph(collection, data) if id != None: return id doc = {} doc["data"] = data return collection.insert_one(doc).inserted_id def find_wmis_embeddings_for_scope(db, scope, solver_graph): solver_graph_id = write_solver_graph_to_pool_db(db["solver_graphs"], solver_graph) qubos = queries.WMIS_scope_query(db) qubos.query(scope) new_embeddings_found = 0 already_found = 0 total_count = 0 for qubo, qubo_id in tqdm(qubos): total_count += 1 max_no_improvement = 10 for i in range(5): if __embedding_entry_exists(db["embeddings"], qubo_id, solver_graph_id): if i == 0: already_found += 1 break; else: nx_qubo = graph.qubo_to_nx_graph(qubo) seed = random.randint(0, sys.maxsize) emb = minorminer.find_embedding(nx_qubo.edges(), solver_graph.edges(), return_overlap=True, max_no_improvement=max_no_improvement, random_seed=seed) if emb[1] == 1: write_wmis_embedding_to_pool_db(db["embeddings"], qubo_id, solver_graph_id, seed, emb[0]) new_embeddings_found += 1 max_no_improvement *= 1.5 percentage = 0 if total_count > 0: percentage = round(((new_embeddings_found + already_found) / total_count) * 100) print("found {} of {} embeddigns ({}%)".format(new_embeddings_found + already_found, total_count, percentage)) print("{} new embeddigns found".format(new_embeddings_found)) def find_embeddings_for_scope(db, solver_graph, qubo_ising_query): solver_graph_id = write_solver_graph_to_pool_db(db["solver_graphs"], solver_graph) new_embeddings_found = 0 already_found = 0 total_count = 0 for qubo, qubo_id in tqdm(qubo_ising_query): total_count += 1 max_no_improvement = 10 for i in range(5): if __embedding_entry_exists(db["embeddings"], qubo_id, solver_graph_id): if i == 0: already_found += 1 break; else: nx_qubo = graph.qubo_to_nx_graph(qubo) seed = random.randint(0, sys.maxsize) emb = minorminer.find_embedding(nx_qubo.edges(), solver_graph.edges(), return_overlap=True, max_no_improvement=max_no_improvement, random_seed=seed) if emb[1] == 1: write_wmis_embedding_to_pool_db(db["embeddings"], qubo_id, solver_graph_id, seed, emb[0]) new_embeddings_found += 1 max_no_improvement *= 1.5 percentage = 0 if total_count > 0: percentage = round(((new_embeddings_found + already_found) / total_count) * 100) print("found {} of {} embeddigns ({}%)".format(new_embeddings_found + already_found, total_count, percentage)) print("{} new embeddigns found".format(new_embeddings_found)) def save_sample_set(collection, result, solver_input, emb_list_index, run): doc = {} doc["data"] = result.to_serializable() doc["instance"] = solver_input["instance_id"] doc["embedding"] = { "embedding_id": solver_input["embeddings_id"], "list_index": emb_list_index } doc["run"] = run collection.insert_one(doc) def save_qpu_result(): doc = {} def analyze_wmis_sample(sample): data = {} data["number_of_assignments"] = np.count_nonzero(list(sample.sample.values())) data["chain_break_fraction"] = sample.chain_break_fraction data["num_occurrences"] = sample.num_occurrences data["energy"] = sample.energy return data def analyde_minisat_run(run_document): data = {} data["satisfiable"] = run_document["satisfiable"] return data def majority_vote_sample(sample): assignments = {} for coupler, energy in sample.items(): var = abs(coupler[1]) if var not in assignments: assignments[var] = {"all": []} if energy == 1: assignments[var]["all"].append(1 if coupler[1] > 0 else 0) for var, a in assignments.items(): assignments[var]["majority"] = 1 if __true_percentage(a["all"]) >= 0.5 else 0 assignment = [0 for i in range(len(assignments))] for var, a in assignments.items(): assignment[var - 1] = a["majority"] return assignment def __true_percentage(a): if len(a) == 0: return 0 return np.count_nonzero(a) / len(a)