from . import script
|
|
from . import queries
|
|
import dimod
|
|
import random
|
|
import numpy as np
|
|
|
|
from bson.objectid import ObjectId
|
|
import pandas as pd
|
|
|
|
from tqdm import tqdm
|
|
|
|
def extract_wmis_qpu_results():
|
|
edb = script.connect_to_experimetns_db()
|
|
edb_cursor = edb.cursor()
|
|
|
|
idb = script.connect_to_instance_pool()
|
|
|
|
scope = input("scope: ")
|
|
result_collection = input("result collection: ")
|
|
|
|
table_name = input("table name: ")
|
|
|
|
q = queries.WMIS_result_scope_query_raw(idb)
|
|
q.query(scope, result_collection)
|
|
|
|
insert_row = ("INSERT INTO {} "
|
|
"(result_id, "
|
|
" run, "
|
|
" instance_id, "
|
|
" number_of_found_assignments, "
|
|
" chain_break_fraction, "
|
|
" num_occurrences, "
|
|
" energy, "
|
|
" satisfiable, "
|
|
" anneal_time, "
|
|
" energy_reach, "
|
|
" sample_size) "
|
|
"VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s) ").format(table_name)
|
|
|
|
run = int(input("run: "))
|
|
|
|
for result in tqdm(q):
|
|
if result["run"] == run:
|
|
sample_set = queries.read_raw_wmis_sample_set(result["data"])
|
|
|
|
data = script.analyze_wmis_sample(sample_set.first)
|
|
|
|
sat = queries.get_instance_by_id(idb["instances"], result["instance"])
|
|
|
|
model = script.majority_vote_sample(sample_set.first.sample)
|
|
|
|
isSatisfiable = sat.checkAssignment(model)
|
|
|
|
anneal_time = result["data"]["info"]["timing"]["qpu_anneal_time_per_sample"]
|
|
|
|
energy_reach = abs(sample_set.record["energy"].max() -
|
|
sample_set.record["energy"].min())
|
|
|
|
sample_size = np.sum(sample_set.record["num_occurrences"])
|
|
|
|
edb_cursor.execute(insert_row, (str(result["_id"]),
|
|
int(result["run"]),
|
|
str(result["instance"]),
|
|
int(data["number_of_assignments"]),
|
|
float(data["chain_break_fraction"]),
|
|
int(data["num_occurrences"]),
|
|
int(data["energy"]),
|
|
isSatisfiable,
|
|
int(anneal_time),
|
|
int(energy_reach),
|
|
int(sample_size)))
|
|
|
|
edb.commit()
|
|
edb_cursor.close()
|
|
edb.close()
|
|
|
|
def extract_wmis_2_qpu_results():
|
|
edb = script.connect_to_experimetns_db()
|
|
edb_cursor = edb.cursor()
|
|
|
|
idb = script.connect_to_instance_pool()
|
|
|
|
scope = input("scope: ")
|
|
result_collection = input("result collection: ")
|
|
table_name = input("table name: ")
|
|
|
|
q = queries.WMIS_result_scope_query_raw(idb)
|
|
q.query(scope, result_collection)
|
|
|
|
insert_row = ("INSERT INTO {} "
|
|
"(result_id, "
|
|
" run, "
|
|
" instance_id, "
|
|
" chain_break_fraction, "
|
|
" num_occurrences, "
|
|
" energy, "
|
|
" satisfiable, "
|
|
" anneal_time, "
|
|
" energy_reach, "
|
|
" sample_size) "
|
|
"VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s) ").format(table_name)
|
|
|
|
|
|
run = int(input("run: "))
|
|
|
|
for result in tqdm(q):
|
|
if result["run"] == run:
|
|
sample_set = queries.read_raw_primitive_ising_sample_set(result["data"])
|
|
|
|
data = script.analyze_wmis_sample(sample_set.first)
|
|
|
|
sat = queries.get_instance_by_id(idb["instances"], result["instance"])
|
|
|
|
post_process_results = __evaluate_wmis_2_sample(sat,
|
|
sample_set.first.sample)
|
|
|
|
anneal_time = result["data"]["info"]["timing"]["qpu_anneal_time_per_sample"]
|
|
|
|
energy_reach = abs(sample_set.record["energy"].max() -
|
|
sample_set.record["energy"].min())
|
|
sample_size = np.sum(sample_set.record["num_occurrences"])
|
|
|
|
edb_cursor.execute(insert_row, (str(result["_id"]),
|
|
int(result["run"]),
|
|
str(result["instance"]),
|
|
float(data["chain_break_fraction"]),
|
|
int(data["num_occurrences"]),
|
|
int(data["energy"]),
|
|
bool(post_process_results["satisfiable"]),
|
|
int(anneal_time),
|
|
int(energy_reach),
|
|
int(sample_size)))
|
|
|
|
edb.commit()
|
|
edb_cursor.close()
|
|
edb.close()
|
|
|
|
def __evaluate_wmis_2_sample(sat, sample):
|
|
post_process_results = {}
|
|
|
|
assignments = {}
|
|
vars = set()
|
|
|
|
for node, energy in sample.items():
|
|
if node[0] == "x":
|
|
lit = int(node[1:])
|
|
|
|
vars.add(abs(lit))
|
|
|
|
assignments[lit] = energy
|
|
|
|
model = [True for i in range(len(vars))]
|
|
|
|
for var in vars:
|
|
if var in assignments:
|
|
model[var - 1] = True if assignments[var] == 1 else False
|
|
elif -var in assignments:
|
|
model[var - 1] = True if assignments[-var] == 0 else False
|
|
|
|
post_process_results["satisfiable"] = sat.checkAssignment(model)
|
|
|
|
return post_process_results
|
|
|
|
def extract_minisat_results():
|
|
edb = script.connect_to_experimetns_db()
|
|
edb_cursor = edb.cursor();
|
|
|
|
idb = script.connect_to_instance_pool()
|
|
|
|
scope = input("scope: ")
|
|
table_name = input("table name: ")
|
|
|
|
runs = queries.Minisat_run_scope_query_raw(idb)
|
|
runs.query(scope, "minisat_runs")
|
|
|
|
insert_row = ("INSERT INTO {} "
|
|
"(run_id, "
|
|
" instance_id, "
|
|
" satisfiable) "
|
|
"VALUES (%s, %s, %s) ").format(table_name)
|
|
|
|
for run in tqdm(runs):
|
|
data = script.analyde_minisat_run(run)
|
|
|
|
edb_cursor.execute(insert_row, (str(run["_id"]),
|
|
str(run["instance"]),
|
|
int(data["satisfiable"])))
|
|
|
|
edb.commit()
|
|
edb_cursor.close()
|
|
edb.close()
|
|
|
|
def extract_instance_parameters():
|
|
edb = script.connect_to_experimetns_db()
|
|
edb_cursor = edb.cursor()
|
|
|
|
idb = script.connect_to_instance_pool()
|
|
|
|
scope = input("scope: ")
|
|
table_name = input("table name: ")
|
|
|
|
instances = queries.Instance_scope_query(idb)
|
|
instances.query(scope)
|
|
|
|
insert_row = ("INSERT INTO {} "
|
|
"(instance_id, "
|
|
" number_of_clauses, "
|
|
" number_of_variables) "
|
|
"VALUES (%s, %s, %s)").format(table_name)
|
|
|
|
for instance, instance_id in tqdm(instances):
|
|
edb_cursor.execute(insert_row, (str(instance_id),
|
|
int(instance.getNumberOfClauses()),
|
|
int(instance.getNumberOfVariables())))
|
|
|
|
edb.commit()
|
|
edb_cursor.close()
|
|
edb.close()
|
|
|
|
def extract_embedding_data():
|
|
edb = script.connect_to_experimetns_db()
|
|
edb_cursor = edb.cursor()
|
|
|
|
idb = script.connect_to_instance_pool()
|
|
|
|
scope = input("scope: ")
|
|
table_name = input("table name: ")
|
|
|
|
qubo_collection = input("qubo collection: ")
|
|
solver_graph_id = ObjectId(input("solver graph id: "))
|
|
|
|
solver_input = queries.WMIS_solver_input_scope_query(idb, qubo_collection)
|
|
solver_input.query(scope, solver_graph_id)
|
|
|
|
results = pd.DataFrame(columns=["instance_id",
|
|
"embedding_list_id",
|
|
"emb_list_index",
|
|
"num_qubits",
|
|
"avgr_chain_length",
|
|
"median_chain_length"]);
|
|
|
|
for soin in solver_input:
|
|
emb_index = 0;
|
|
for emb in soin["embeddings"]:
|
|
chain_lengths = []
|
|
qubits = set()
|
|
|
|
for node, chain in emb.items():
|
|
|
|
chain_lengths.append(len(chain))
|
|
|
|
qubits = qubits.union(set(chain))
|
|
|
|
results = results.append({"instance_id": soin["instance_id"],
|
|
"embedding_list_id": soin["embeddings_id"],
|
|
"emb_list_index": emb_index,
|
|
"num_qubits": len(qubits),
|
|
"avgr_chain_length": np.mean(chain_lengths),
|
|
"median_chain_length": np.median(chain_lengths)},
|
|
ignore_index=True)
|
|
|
|
insert_row = ('''INSERT INTO {}
|
|
(instance_id,
|
|
embedding_list_id,
|
|
emb_list_index,
|
|
num_qubits,
|
|
avgr_chain_length,
|
|
median_chain_length)
|
|
VALUES(%s, %s, %s, %s, %s, %s)''').format(table_name)
|
|
|
|
for index, row in results.iterrows():
|
|
edb_cursor.execute(insert_row, (str(row["instance_id"]),
|
|
str(row["embedding_list_id"]),
|
|
int(row["emb_list_index"]),
|
|
int(row["num_qubits"]),
|
|
float(row["avgr_chain_length"]),
|
|
float(row["median_chain_length"])))
|
|
|
|
edb.commit()
|
|
edb_cursor.close()
|
|
edb.close()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|