You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

256 lines
7.9 KiB

#!/usr/bin/env python3
import argparse
import os
import glob
import json
import numpy as np
import matplotlib.pyplot as plt
import collections
def main():
args = __parseArguments()
__stats(args["comparisonDir"], args["outputDir"])
def __parseArguments():
parser = argparse.ArgumentParser()
parser.add_argument("-d", "--directory", help="the direcotry with all comparison files", type=str)
parser.add_argument("-o", "--output", help="Directory to store the stats", type=str)
args = parser.parse_args()
arguments = {}
print(args)
arguments["comparisonDir"] = args.directory
if arguments["comparisonDir"] == None:
arguments["comparisonDir"] = str(input("Comparison directory: "))
arguments["comparisonDir"] = os.path.abspath(arguments["comparisonDir"])
arguments["outputDir"] = args.output
if arguments["outputDir"] == None:
arguments["outputDir"] = str(input("Output directory: "))
arguments["outputDir"] = os.path.abspath(arguments["outputDir"])
return arguments
def __stats(comparisonDir, outputDir):
stats = __collectStats(comparisonDir)
__writeStats(stats, outputDir)
def __collectStats(comparisonDir):
files = glob.glob(os.path.join(comparisonDir, "*.cmp"))
stats = []
for path in files:
comparison = __readComparison(path)
stats.append(__processSingleInstance(comparison))
return stats
def __processSingleInstance(comparison):
instanceStats = {}
degrees = comparison["degrees_of_variables"]
degreeArr = np.array(list(degrees.values()))
instanceStats["degree_of_variables_mean"] = degreeArr.mean()
instanceStats["degree_of_variables_median"] = np.median(degreeArr)
instanceStats["degree_of_variables_std_dev"] = np.std(degreeArr)
instanceStats["degree_of_variables_max"] = degreeArr.max()
instanceStats["degree_of_variables_min"] = degreeArr.min()
instanceStats["variables_per_degree"] = __getVarsPerDegree(degreeArr)
if comparison["minisat_satisfiable"]:
if __instanceIsFalseNegative(comparison):
instanceStats["result"] = "false_negative"
else:
instanceStats["result"] = "satisfiable"
else:
instanceStats["result"] = "unsatisfiable"
return instanceStats
def __instanceIsFalseNegative(comparison):
return (comparison["minisat_satisfiable"] == True and
comparison["qubo_satisfiable"] == False)
def __getVarsPerDegree(degreeArr):
degCount = collections.Counter(degreeArr)
varsPerDegree = {}
for degree in degCount:
varsPerDegree[degree] = degCount[degree]
return varsPerDegree
def __readComparison(path):
cmpFile = open(path, "r")
comparison = json.load(cmpFile)
cmpFile.close()
return comparison
def __writeStats(stats, outputDir):
fig1 = plt.figure()
data = __seperateMatchesAndFalseNegatives(stats)
ax0 = fig1.add_subplot(141,)
ax0.boxplot([data["mean"]["satisfiable"],
data["mean"]["false_negative"],
data["mean"]["unsatisfiable"]])
ax0.set_title("mean")
ax1 = fig1.add_subplot(142, sharey=ax0)
ax1.boxplot([data["median"]["satisfiable"],
data["median"]["false_negative"],
data["median"]["unsatisfiable"]])
ax1.set_title("median")
ax2 = fig1.add_subplot(143, sharey=ax0)
ax2.boxplot([data["max"]["satisfiable"],
data["max"]["false_negative"],
data["max"]["unsatisfiable"]])
ax2.set_title("max degree")
ax3 = fig1.add_subplot(144, sharey=ax0)
ax3.boxplot([data["min"]["satisfiable"],
data["min"]["false_negative"],
data["min"]["unsatisfiable"]])
ax3.set_title("min degree")
fig2 = plt.figure()
ax4 = fig2.add_subplot(111)
ax4.boxplot([data["std_dev"]["satisfiable"],
data["std_dev"]["false_negative"],
data["std_dev"]["unsatisfiable"]])
ax4.set_title("standard deviation")
_BINS_ = 23
fig3 = plt.figure()
ax5 = fig3.add_subplot(311)
varsPerDegreeSat = __accumulateVarsPerDegree(data["vars_per_degree"]["satisfiable"])
ax5.hist(varsPerDegreeSat, density=True, bins=_BINS_)
ax6 = fig3.add_subplot(312, sharex=ax5)
varsPerDegreeFP = __accumulateVarsPerDegree(data["vars_per_degree"]["false_negative"])
ax6.hist(varsPerDegreeFP, density=True, bins=_BINS_)
ax7 = fig3.add_subplot(313, sharex=ax6)
varsPerDegreeUnsat = __accumulateVarsPerDegree(data["vars_per_degree"]["unsatisfiable"])
ax7.hist(varsPerDegreeUnsat, density=True, bins=_BINS_)
plt.setp([ax0, ax1, ax2, ax3, ax4], xticks=[1, 2, 3], xticklabels=["satisfiable",
"false negative",
"unsatisfiable"])
plt.setp(ax0.get_xticklabels(), rotation=45)
plt.setp(ax1.get_xticklabels(), rotation=45)
plt.setp(ax2.get_xticklabels(), rotation=45)
plt.setp(ax3.get_xticklabels(), rotation=45)
plt.setp(ax4.get_xticklabels(), rotation=45)
fig1.set_size_inches(12, 8)
fig1.suptitle("Degrees of variables", fontsize=16)
fig2.set_size_inches(4, 8)
fig3.set_size_inches(5, 12)
fig1.savefig(os.path.join(outputDir, "degrees1.png"))
fig2.savefig(os.path.join(outputDir, "degrees2.png"))
fig3.savefig(os.path.join(outputDir, "degrees3.png"))
plt.show()
def __accumulateVarsPerDegree(listOfVarsPerDegreeDicts):
accumulated = []
for instance in listOfVarsPerDegreeDicts:
for degree in instance:
accumulated += [degree] * instance[degree]
return accumulated
def __compressVarsPerDegree(listOfVarsPerDegreeDicts):
compressed = {}
countOfVars = 0
for instance in listOfVarsPerDegreeDicts:
for degree in instance:
if degree in compressed:
compressed[degree] += float(instance[degree])
else:
compressed[degree] = float(instance[degree])
countOfVars += instance[degree]
check = 0
for degree in compressed:
compressed[degree] /= countOfVars
check += compressed[degree]
print("check: ", check)
return compressed
def __seperateMatchesAndFalseNegatives(stats):
data = {}
data["mean"] = {"false_negative": [],
"satisfiable": [],
"unsatisfiable": []}
data["median"] = {"false_negative": [],
"satisfiable": [],
"unsatisfiable": []}
data["std_dev"] = {"false_negative": [],
"satisfiable": [],
"unsatisfiable": []}
data["max"] = {"false_negative": [],
"satisfiable": [],
"unsatisfiable": []}
data["min"] = {"false_negative": [],
"satisfiable": [],
"unsatisfiable": []}
data["vars_per_degree"] = {"false_negative": [],
"satisfiable": [],
"unsatisfiable": []}
for instance in stats:
target = instance["result"]
data["mean"][target].append(instance["degree_of_variables_mean"])
data["median"][target].append(instance["degree_of_variables_median"])
data["std_dev"][target].append(instance["degree_of_variables_std_dev"])
data["max"][target].append(instance["degree_of_variables_max"])
data["min"][target].append(instance["degree_of_variables_min"])
data["vars_per_degree"][target].append(instance["variables_per_degree"])
return data
if __name__ == "__main__":
main()