You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

338 lines
11 KiB

import configparser
import os
import argparse
import pymongo
import ssl
import mysql.connector
import networkx as nx
from . import queries
from . import graph
import minorminer
from tqdm import tqdm
import numpy as np
def readConfig(configFilePath):
config = configparser.ConfigParser()
if os.path.isfile(configFilePath):
config.read(configFilePath)
return config
class ArgParser:
def __init__(self):
self.__flags = {}
self.__parser = argparse.ArgumentParser()
self.__instanceDirArgSet = False
self.__config = None
self.__parsedArgs = {}
def addArg(self, alias,
shortFlag,
longFlag,
help,
type,
default=None,
ignoreDatabaseConfig=False):
self.__flags[alias] = {"longFlag": longFlag,
"hasDefault": False,
"ignoreDatabaseConfig": ignoreDatabaseConfig,
"type": type}
if default != None:
self.__flags[alias]["hasDefault"] = True
self.__parser.add_argument("-%s" % shortFlag,
"--%s" % longFlag,
help=help,
type=type,
default=default)
def addInstanceDirArg(self):
self.__instanceDirArgSet = True
self.addArg(alias="datasetDir", shortFlag="d", longFlag="dataset_dir",
help="the base direcotry of the dataset; if this flag is given the others can be omitted",
type=str, ignoreDatabaseConfig=True)
def parse(self):
self.__parsedArgs = {}
args = vars(self.__parser.parse_args())
if self.__instanceDirArgSet:
self.__config = readConfig(os.path.join(args["dataset_dir"],
"dataset.config"))
self.__parseDatasetConfig()
for alias, flag in self.__flags.items():
self.__parsedArgs[alias] = self.__processFlag(args, flag)
self.__config = None
return self.__parsedArgs
def __parseDatasetConfig(self):
for flag, value in self.__config["STRUCTURE"].items():
self.__parsedArgs[flag] = value
def __processFlag(self, args, flag):
longFlag = flag["longFlag"]
tmpValue = self.__parsedArgs[longFlag] if longFlag in self.__parsedArgs else None
if flag["ignoreDatabaseConfig"] == True:
tmpValue = None
if args[longFlag]:
tmpValue = args[longFlag]
if tmpValue == None:
tmpValue = flag["type"](input("pass arguement %s: " % longFlag))
return tmpValue
def getDBContext(dbConfigPath):
dbContext = {}
dbContext["client"] = connect_to_instance_pool(dbConfigPath)
dbContext["db"] = dbContext["client"]["experiments"]
dbContext["instances"] = dbContext["db"]["instances"]
dbContext["experimentScopes"] = dbContext["db"]["experiment_scopes"]
return dbContext
def connect_to_instance_pool(dbConfigPath = "database.config"):
dbConf = readConfig(dbConfigPath)
client = pymongo.MongoClient(
"mongodb://%s:%s@%s:%s/%s"
% ( dbConf["INSTANCE_POOL"]["user"],
dbConf["INSTANCE_POOL"]["pw"],
dbConf["INSTANCE_POOL"]["url"],
dbConf["INSTANCE_POOL"]["port"],
dbConf["INSTANCE_POOL"]["database"]),
ssl=True,
ssl_cert_reqs=ssl.CERT_NONE)
return client[dbConf["INSTANCE_POOL"]["database"]]
def connect_to_experimetns_db(dbConfigPath = "database.config"):
dbConfig = readConfig(dbConfigPath)
return mysql.connector.connect(
host=dbConfig["EXPERIMENT_DB"]["url"],
port=dbConfig["EXPERIMENT_DB"]["port"],
user=dbConfig["EXPERIMENT_DB"]["user"],
password=dbConfig["EXPERIMENT_DB"]["pw"],
database=dbConfig["EXPERIMENT_DB"]["database"]
)
def frange(start, stop, steps):
while start < stop:
yield start
start += steps
def create_experiment_scope(db, description, name):
experimentScope = {}
experimentScope["instances"] = []
experimentScope["description"] = description
experimentScope["_id"] = name.strip()
db["experiment_scopes"].insert_one(experimentScope)
def write_instance_to_pool_db(db, instance):
instance_document = instance.writeJSONLike()
result = db["instances"].insert_one(instance_document)
return result.inserted_id
def add_instance_to_experiment_scope(db, scope_name, instance_id):
db["experiment_scopes"].update_one(
{"_id": scope_name},
{"$push": {"instances": instance_id}}
)
def write_qubo_to_pool_db(collection, qubo, sat_instance_id):
doc = {}
doc["instance"] = sat_instance_id
doc["description"] = {"<qubo>": "<entrys>",
"<entrys>": "<entry><entrys> | <entry> | \"\"",
"<entry>": "<coupler><energy>",
"<energy>": "<real_number>",
"<coupler>": "<node><node>",
"<node>": "<clause><literal>",
"<clause>": "<natural_number>",
"<literal>": "<integer>"}
doc["qubo"] = __qubo_to_JSON(qubo)
collection.insert_one(doc)
def __qubo_to_JSON(qubo):
quboJSON = []
for coupler, value in qubo.items():
quboJSON.append([coupler, float(value)])
return quboJSON
def write_wmis_embedding_to_pool_db(collection, qubo_id, solver_graph_id, embedding):
if not __embedding_entry_exists(collection, qubo_id, solver_graph_id):
__prepare_new_wmis_embedding_entry(collection, qubo_id, solver_graph_id)
collection.update_one(
{"qubo": qubo_id, "solver_graph": solver_graph_id},
{"$push": {"embeddings": __embedding_to_array(embedding)}}
)
def __embedding_entry_exists(collection, qubo_id, solver_graph_id):
filter = {"qubo": qubo_id, "solver_graph": solver_graph_id}
if collection.count_documents(filter) > 0:
return True
return False
def __prepare_new_wmis_embedding_entry(collection, qubo_id, solver_graph_id):
doc = {}
doc["qubo"] = qubo_id
doc["solver_graph"] = solver_graph_id
doc["description"] = {"<embedding>": "<chains>",
"<chains>": "<chain><chains> | \"\"",
"<chain>" : "<original_node><chimera_nodes>",
"<chimera_nodes>": "<chimera_node><chimera_nodes> | \"\""}
doc["embeddings"] = []
collection.insert_one(doc)
def __embedding_to_array(embedding):
emb_arr = []
for node, chain in embedding.items():
emb_arr.append([node, chain])
return emb_arr
def write_solver_graph_to_pool_db(collection, graph):
data = nx.node_link_data(graph)
id = queries.get_id_of_solver_graph(collection, data)
if id != None:
return id
doc = {}
doc["data"] = data
return collection.insert_one(doc).inserted_id
def find_wmis_embeddings_for_scope(db, scope, solver_graph):
solver_graph_id = write_solver_graph_to_pool_db(db["solver_graphs"],
solver_graph)
qubos = queries.WMIS_scope_query(db)
qubos.query(scope)
new_embeddings_found = 0
already_found = 0
total_count = 0
for qubo, qubo_id in tqdm(qubos):
total_count += 1
max_no_improvement = 10
for i in range(5):
if __embedding_entry_exists(db["embeddings"], qubo_id, solver_graph_id):
already_found += 1
break;
else:
nx_qubo = graph.qubo_to_nx_graph(qubo)
emb = minorminer.find_embedding(nx_qubo.edges(),
solver_graph.edges(),
return_overlap=True,
max_no_improvement=max_no_improvement)
if emb[1] == 1:
write_wmis_embedding_to_pool_db(db["embeddings"],
qubo_id,
solver_graph_id,
emb[0])
new_embeddings_found += 1
max_no_improvement *= 1.5
percentage = 0
if total_count > 0:
percentage = round(((new_embeddings_found + already_found) / total_count) * 100)
print("found {} of {} embeddigns ({}%)".format(new_embeddings_found + already_found,
total_count,
percentage))
print("{} new embeddigns found".format(new_embeddings_found))
def save_simulated_annealing_result(collection, result, solver_input, emb_list_index):
doc = {}
doc["data"] = result.to_serializable()
doc["instance"] = solver_input["instance_id"]
doc["embedding"] = {
"embedding_id": solver_input["embeddings_id"],
"list_index": emb_list_index
}
collection.insert_one(doc)
def analyze_wmis_sample(sample):
data = {}
data["number_of_assignments"] = np.count_nonzero(list(sample.sample.values()))
data["chain_break_fraction"] = sample.chain_break_fraction
data["num_occurrences"] = sample.num_occurrences
data["energy"] = sample.energy
return data
def analyde_minisat_run(run_document):
data = {}
data["satisfiable"] = run_document["satisfiable"]
return data
def majority_vote_sample(sample):
assignments = {}
for coupler, energy in sample.items():
var = abs(coupler[1])
if var not in assignments:
assignments[var] = {"all": []}
if energy == 1:
assignments[var]["all"].append(1 if coupler[1] > 0 else 0)
for var, a in assignments.items():
assignments[var]["majority"] = 1 if __true_percentage(a["all"]) >= 0.5 else 0
assignment = [0 for i in range(len(assignments))]
for var, a in assignments.items():
assignment[var - 1] = a["majority"]
return assignment
def __true_percentage(a):
if len(a) == 0:
return 0
return np.count_nonzero(a) / len(a)