You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

178 lines
4.8 KiB

#!/usr/bin/env python3
from . import randomSAT
import math
import random
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
class Random_instance_pool:
def __init__(self, parameter_range):
self.__parameter_range = parameter_range
def __iter__(self):
return self
def __next__(self):
return self.Random(self.__parameter_range.next())
class Random:
def __init__(self, parameters):
self.__params = parameters
def random(self):
return randomSAT.generateRandomKSAT(self.__params.number_of_clauses,
self.__params.number_of_variables,
self.__params.variables_per_clause)
class Instance_parameters:
def __init__(self,
number_of_clauses,
number_of_variables,
variables_per_clause = 3):
self.number_of_clauses = number_of_clauses
self.number_of_variables = number_of_variables
self.variables_per_clause = variables_per_clause
def __str__(self):
return ("number of clauses: {}\n"
"number of variables: {}\n"
"variables per clause: {}").format(self.number_of_clauses,
self.number_of_variables,
self.variables_per_clause)
class Instance_parameter_variable_range:
def __init__(self, start_parameter, variable_range):
self.start_parameter = start_parameter
self.__variable_range = variable_range
def __iter__(self):
return self
def __next__(self):
self.start_parameter.number_of_variables = self.__variable_range.next()
return self.start_parameter
def next(self):
return self.__next__()
class Manual_range:
def __init__(self, start, stop, step = 1):
self.start = start
self.stop = stop
self.step = step
self.__current = start
def __iter__(self):
return self
def __next__(self):
if self.__current >= self.stop:
raise StopIteration
self.__current += self.step
return self.__current
def next(self):
return self.__next__()
class Random_range:
def __init__(self, random_generator, steps):
self.__random_generator = random_generator
self.__steps = steps
self.__current_step = 0
def __iter__(self):
return self
def __next__(self):
if self.__current_step < self.__steps:
self.__current_step += 1
return self.__random_generator.random()
else:
raise StopIteration
def next(self):
return self.__next__()
class Random_logistic_variable_distribution:
def __init__(self,
number_of_clauses,
min_variables,
max_variables,
alpha_point_of_interest,
steepnesss):
self.__number_of_clauses = number_of_clauses
self.__min_variables = min_variables
self.__max_variables = max_variables
self.__alpha_point_of_interest = alpha_point_of_interest
self.__steepnesss = steepnesss
def random(self):
number_of_variables = 0
while (number_of_variables < self.__min_variables or
number_of_variables > self.__max_variables):
alpha = inv_logistic(random.random(),
1,
self.__steepnesss,
self.__alpha_point_of_interest)
number_of_variables = int(self.__number_of_clauses / alpha)
return number_of_variables
def inv_logistic(x, L, k, x0):
return math.log(math.pow(x / (L-x), 1/k)) + x0
def test():
sns.set()
data = []
logistic_distr = Random_logistic_variable_distribution(42, 5, 84, 4.5, 1)
rnd_range = Random_range(logistic_distr, 500)
for i in range(500):
#data.append(50/math.exp(random.uniform(5, 50)))
#v = 0
#while v < 5 or v > 84:
#v = int(42 / inv_logistic(random.random(), 1, 1, 4.5))
data.append(rnd_range.next())
data = np.array(data)
sns.distplot(data,
#bins=30,
norm_hist=True)
#sns.lineplot(list(range(2, 100)), data)
plt.show()
sns.distplot(42/data,
#bins=30,
norm_hist=True)
#sns.lineplot(list(range(2, 100)), data)
plt.show()
return data