You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

290 lines
10 KiB

#!/usr/bin/env python3
import argparse
import os
import glob
import json
import numpy as np
import matplotlib.pyplot as plt
import collections
import scriptUtils
def main():
args = __parseArguments()
print(args)
__stats(args["comparisonDir"], args["outputDir"])
def __parseArguments():
argParser = scriptUtils.ArgParser()
argParser.addInstanceDirArg();
argParser.addArg(alias="comparisonDir", shortFlag="c", longFlag="comparison_dir",
help="the direcotry with all comparison files", type=str)
argParser.addArg(alias="outputDir", shortFlag="o", longFlag="comparison_stats_dir",
help="Directory to store the stats", type=str)
return argParser.parse()
def __stats(comparisonDir, outputDir):
stats = __collectStats(comparisonDir)
__writeStats(stats, outputDir)
def __collectStats(comparisonDir):
files = glob.glob(os.path.join(comparisonDir, "*.cmp"))
stats = []
for path in files:
comparison = __readComparison(path)
stats.append(__processSingleInstance(comparison))
return stats
def __processSingleInstance(comparison):
instanceStats = {}
conflicts = comparison["conflicts_per_variable"]
conflictArr = np.array(list(conflicts.values()))
instanceStats["conflicts_per_variable_mean"] = conflictArr.mean()
instanceStats["conflicts_per_variable_median"] = np.median(conflictArr)
instanceStats["conflicts_per_variable_std_dev"] = np.std(conflictArr)
instanceStats["conflicts_per_variable_max"] = conflictArr.max()
instanceStats["conflicts_per_variable_min"] = conflictArr.min()
instanceStats["conflicts_per_instance"] = np.sum(conflictArr)
instanceStats["raw_conflicts"] = list(conflictArr)
instanceStats["conflicts_to_degree_per_variable"] = __calcConflictsToDegree(conflicts,
comparison["degrees_of_variables"])
if comparison["minisat_satisfiable"]:
if __instanceIsFalseNegative(comparison):
instanceStats["result"] = "false_negative"
else:
instanceStats["result"] = "satisfiable"
else:
instanceStats["result"] = "unsatisfiable"
return instanceStats
def __calcConflictsToDegree(degreesPerVariable, conflictsPerVariable):
conflictsToDegreePerVariable = []
for varLabel, degree in degreesPerVariable.items():
conflicts = conflictsPerVariable[varLabel]
cnflToDeg = conflicts / (float(degree) / 2.0)**2
if cnflToDeg <= 1:
conflictsToDegreePerVariable.append(cnflToDeg)
return conflictsToDegreePerVariable
def __instanceIsFalseNegative(comparison):
return (comparison["minisat_satisfiable"] == True and
comparison["qubo_satisfiable"] == False)
def __readComparison(path):
cmpFile = open(path, "r")
comparison = json.load(cmpFile)
cmpFile.close()
return comparison
def __writeStats(stats, outputDir):
data = __seperateMatchesAndFalseNegatives(stats)
overviewFig = __createOverviewFig(data)
meanFig = __createSingleStatFig(data["mean"], "Conflicts per variable mean")
medianFig = __createSingleStatFig(data["median"], "Conflicts per variable median")
maxFig = __createSingleStatFig(data["max"], "Conflicts per variable max")
minFig = __createSingleStatFig(data["min"], "Conflicts per variable min")
stdDevFig = __createSingleStatFig(data["std_dev"], "Conflicts per variable\nstandard deviation")
cnflPerInstFig = __createSingleStatFig(data["cnfl_per_inst"], "Conflicts per instance")
cnflDegFig1 = __createSingleStatFig(data["cnflDeg"], "Conflicts in relation to degree", showfliers=False);
cnflDegFig2 = __createSingleStatFig(data["cnflDeg"], "Conflicts in relation to degree", showfliers=True);
histFig = __createHistogramFig(data, "raw", "Conflict per variable");
#cnflDegHistFig = __createHistogramFig(data, "cnflDeg", "Conflicts in relation to degree");
__setBatchXticks(figures=[overviewFig,
meanFig,
medianFig,
maxFig,
minFig,
stdDevFig,
cnflPerInstFig,
cnflDegFig1,
cnflDegFig2],
ticks=[1, 2, 3],
labels=["satisfiable",
"false negative",
"unsatisfiable"])
__setBatchXtickLabelRotation(figures=[overviewFig,
meanFig,
medianFig,
maxFig,
minFig,
stdDevFig,
cnflPerInstFig,
cnflDegFig1,
cnflDegFig2],
rotation=30)
overviewFig.savefig(os.path.join(outputDir, "conflicts_overview.png"))
meanFig.savefig(os.path.join(outputDir, "conflicts_mean.png"))
medianFig.savefig(os.path.join(outputDir, "conflicts_median.png"))
maxFig.savefig(os.path.join(outputDir, "conflicts_max.png"))
minFig.savefig(os.path.join(outputDir, "conflicts_min.png"))
stdDevFig.savefig(os.path.join(outputDir, "conflicts_std_dev.png"))
cnflPerInstFig.savefig(os.path.join(outputDir, "conflicts_per_instance.png"))
histFig.savefig(os.path.join(outputDir, "conflicts_per_var_hist.png"))
cnflDegFig1.savefig(os.path.join(outputDir, "conflicts_in_relation_to_degree_1.png"))
cnflDegFig2.savefig(os.path.join(outputDir, "conflicts_in_relation_to_degree_2.png"))
#plt.show(overviewFig)
def __createOverviewFig(data):
fig = plt.figure()
ax0 = fig.add_subplot(141,)
ax0.boxplot([data["mean"]["satisfiable"],
data["mean"]["false_negative"],
data["mean"]["unsatisfiable"]])
ax0.set_title("mean")
ax1 = fig.add_subplot(142, sharey=ax0)
ax1.boxplot([data["median"]["satisfiable"],
data["median"]["false_negative"],
data["median"]["unsatisfiable"]])
ax1.set_title("median")
ax2 = fig.add_subplot(143, sharey=ax0)
ax2.boxplot([data["max"]["satisfiable"],
data["max"]["false_negative"],
data["max"]["unsatisfiable"]])
ax2.set_title("max degree")
ax3 = fig.add_subplot(144, sharey=ax0)
ax3.boxplot([data["min"]["satisfiable"],
data["min"]["false_negative"],
data["min"]["unsatisfiable"]])
ax3.set_title("min degree")
fig.set_size_inches(12, 8)
fig.suptitle("Conflicts per variable overview", fontsize=16)
return fig
def __createHistogramFig(data, subDataSet, title):
fig = plt.figure()
bins = int(max(data[subDataSet]["satisfiable"]) / 5)
ax0 = fig.add_subplot(321)
ax0.hist(data[subDataSet]["satisfiable"], bins=bins)
ax0_2 = fig.add_subplot(322)
ax0_2.boxplot(data[subDataSet]["satisfiable"], vert=False)
ax1 = fig.add_subplot(323, sharex=ax0)
ax1.hist(data[subDataSet]["false_negative"], bins=bins)
ax1_2 = fig.add_subplot(324, sharex=ax0_2)
ax1_2.boxplot(data[subDataSet]["false_negative"], vert=False)
ax2 = fig.add_subplot(325, sharex=ax0)
ax2.hist(data[subDataSet]["unsatisfiable"], bins=bins)
ax2_2 = fig.add_subplot(326, sharex=ax0_2)
ax2_2.boxplot(data[subDataSet]["unsatisfiable"], vert=False)
fig.set_size_inches(14, 10)
fig.suptitle(title, fontsize=16)
return fig
def __createSingleStatFig(subDataset, title, showfliers=True):
fig = plt.figure()
ax = fig.add_subplot(111)
ax.boxplot([subDataset["satisfiable"],
subDataset["false_negative"],
subDataset["unsatisfiable"]], showfliers=showfliers)
fig.set_size_inches(3.5, 8)
fig.suptitle(title, fontsize=16)
return fig
def __setBatchXticks(figures, ticks, labels):
for fig in figures:
plt.setp(fig.get_axes(), xticks=ticks, xticklabels=labels)
def __setBatchXtickLabelRotation(figures, rotation):
for fig in figures:
for ax in fig.get_axes():
plt.setp(ax.get_xticklabels(), rotation=rotation)
def __seperateMatchesAndFalseNegatives(stats):
data = {}
data["mean"] = {"false_negative": [],
"satisfiable": [],
"unsatisfiable": []}
data["median"] = {"false_negative": [],
"satisfiable": [],
"unsatisfiable": []}
data["std_dev"] = {"false_negative": [],
"satisfiable": [],
"unsatisfiable": []}
data["max"] = {"false_negative": [],
"satisfiable": [],
"unsatisfiable": []}
data["min"] = {"false_negative": [],
"satisfiable": [],
"unsatisfiable": []}
data["cnfl_per_inst"] = {"false_negative": [],
"satisfiable": [],
"unsatisfiable": []}
data["raw"] = {"false_negative": [],
"satisfiable": [],
"unsatisfiable": []}
data["cnflDeg"] = {"false_negative": [],
"satisfiable": [],
"unsatisfiable": []}
for instance in stats:
target = instance["result"]
data["mean"][target].append(instance["conflicts_per_variable_mean"])
data["median"][target].append(instance["conflicts_per_variable_median"])
data["std_dev"][target].append(instance["conflicts_per_variable_std_dev"])
data["max"][target].append(instance["conflicts_per_variable_max"])
data["min"][target].append(instance["conflicts_per_variable_min"])
data["cnfl_per_inst"][target].append(instance["conflicts_per_instance"])
data["raw"][target].extend(instance["raw_conflicts"])
data["cnflDeg"][target].extend(instance["conflicts_to_degree_per_variable"])
return data
if __name__ == "__main__":
main()