|
|
- library(ggplot2)
-
- func.g <- function(x) x
- func.k <- function(x) sin(x)
- func.h <- function(x) x * sin(x)
- func.l <- function(x) 2 + cos(x) + sin(2*x)
-
-
- delta.const <- function(x) {
- return(function() x)
- }
-
- delta.gaus <- function() {
- return(rnorm(1))
- }
-
- ea.init_population <- function(range, size, rand_gen) {
- return(rand_gen(size) * (range[2] - range[1]) + range[1])
- }
-
- ea.trace <- function(range, delta, population_size, fit_func, iterations) {
- population <- ea.init_population(range, population_size, runif)
-
- df <- data.frame(i=integer()
- ,max=numeric()
- ,median=numeric()
- ,min=numeric())
-
- for(i in 1:iterations) {
- population <- ea.iterate(delta, population, fit_func)
-
- df[nrow(df) + 1,] <- c(i
- ,population[1]
- ,population[length(population) %/% 2]
- ,population[length(population)]
- )
- }
-
- df["max_val"] <- fit_func(df$max)
- df["median_val"] <- fit_func(df$median)
- df["min_val"] <- fit_func(df$min)
-
- res <- list(population, df)
- names(res) <- c("population", "df_tr")
-
- return(res)
- }
-
- ea.traces <- function(range, deltas, population_size, fit_funcs, iterations) {
- df <- data.frame(i=integer()
- ,max=numeric()
- ,median=numeric()
- ,min=numeric()
- ,delta_func=character()
- ,delta=numeric()
- ,fit_func=character())
-
- for(delta_func in names(deltas)) {
- delta <- deltas[delta_func]
-
- for(fit_name in names(fit_funcs)) {
- fit <- fit_funcs[fit_name]
-
- tmp_df <- ea.trace(range, delta, population_size, fit, iterations)$df_tr
-
- tmp_df["delta_func"] <- delta_func
- if(delta_func == "delta.gaus") {
- tmp_df["delta"] <- NA
- } else {
- tmp_df["delta"] <- delta()
- }
-
- tmp_df["fit_func"] <- fit_name
-
- df <- rbind(df, tmp_df)
- }
- }
-
- return(df)
- }
-
- ea.plot <- function(range, delta, population_size, fit_func, iterations) {
- res <- ea.trace(range, delta, population_size, fit_func, iterations)
-
- df_vals <- melt(res$df_tr[c("i", "min_val", "median_val", "max_val")], id.vars="i")
-
- p <- ggplot(data=df_vals, aes(x=i)) +
- geom_line(aes(y=value, linetype=variable))
-
- return(p)
- }
-
- ea.run <- function(range, delta, population_size, fit_func, iterations) {
- population <- ea.init_population(range, population_size, runif)
-
- for(i in 1:iterations) {
- population <- ea.iterate(delta, population, fit_func)
- }
-
- return(population)
- }
-
- ea.iterate <- function(delta, population, fit_func) {
- children <- c()
-
- for(individual in population) {
- children <- append(children, ea.mutate(individual, delta))
- }
-
- population <- append(population, children)
-
- return(ea.select(population, fit_func))
- }
-
- ea.mutate <- function(individual, delta) {
- sign <- sample(c(-1,1), 1)
-
- return(individual + sign * delta())
- }
-
- ea.select <- function(population, fit_func) {
- sorted_popul <- population[order(sapply(population, fit_func), decreasing=TRUE)]
- return(sorted_popul[1 : (length(sorted_popul) %/% 2)])
- }
|