library(ggplot2) func.g <- function(x) x func.k <- function(x) sin(x) func.h <- function(x) x * sin(x) func.l <- function(x) 2 + cos(x) + sin(2*x) delta.const <- function(x) { return(function() x) } delta.gaus <- function() { return(rnorm(1)) } ea.init_population <- function(range, size, rand_gen) { return(rand_gen(size) * (range[2] - range[1]) + range[1]) } ea.trace <- function(range, delta, population_size, fit_func, iterations) { population <- ea.init_population(range, population_size, runif) df <- data.frame(i=integer() ,max=numeric() ,median=numeric() ,min=numeric()) for(i in 1:iterations) { population <- ea.iterate(delta, population, fit_func) df[nrow(df) + 1,] <- c(i ,population[1] ,population[length(population) %/% 2] ,population[length(population)] ) } df["max_val"] <- fit_func(df$max) df["median_val"] <- fit_func(df$median) df["min_val"] <- fit_func(df$min) res <- list(population, df) names(res) <- c("population", "df_tr") return(res) } ea.traces <- function(range, deltas, population_size, fit_funcs, iterations) { df <- data.frame(i=integer() ,max=numeric() ,median=numeric() ,min=numeric() ,delta_func=character() ,delta=numeric() ,fit_func=character()) for(delta_func in names(deltas)) { delta <- deltas[delta_func] for(fit_name in names(fit_funcs)) { fit <- fit_funcs[fit_name] tmp_df <- ea.trace(range, delta, population_size, fit, iterations)$df_tr tmp_df["delta_func"] <- delta_func if(delta_func == "delta.gaus") { tmp_df["delta"] <- NA } else { tmp_df["delta"] <- delta() } tmp_df["fit_func"] <- fit_name df <- rbind(df, tmp_df) } } return(df) } ea.plot <- function(range, delta, population_size, fit_func, iterations) { res <- ea.trace(range, delta, population_size, fit_func, iterations) df_vals <- melt(res$df_tr[c("i", "min_val", "median_val", "max_val")], id.vars="i") p <- ggplot(data=df_vals, aes(x=i)) + geom_line(aes(y=value, linetype=variable)) return(p) } ea.run <- function(range, delta, population_size, fit_func, iterations) { population <- ea.init_population(range, population_size, runif) for(i in 1:iterations) { population <- ea.iterate(delta, population, fit_func) } return(population) } ea.iterate <- function(delta, population, fit_func) { children <- c() for(individual in population) { children <- append(children, ea.mutate(individual, delta)) } population <- append(population, children) return(ea.select(population, fit_func)) } ea.mutate <- function(individual, delta) { sign <- sample(c(-1,1), 1) return(individual + sign * delta()) } ea.select <- function(population, fit_func) { sorted_popul <- population[order(sapply(population, fit_func), decreasing=TRUE)] return(sorted_popul[1 : (length(sorted_popul) %/% 2)]) }