library(ggplot2)
|
|
|
|
func.g <- function(x) x
|
|
func.k <- function(x) sin(x)
|
|
func.h <- function(x) x * sin(x)
|
|
func.l <- function(x) 2 + cos(x) + sin(2*x)
|
|
|
|
|
|
delta.const <- function(x) {
|
|
return(function() x)
|
|
}
|
|
|
|
delta.gaus <- function() {
|
|
return(rnorm(1))
|
|
}
|
|
|
|
ea.init_population <- function(range, size, rand_gen) {
|
|
return(rand_gen(size) * (range[2] - range[1]) + range[1])
|
|
}
|
|
|
|
ea.trace <- function(range, delta, population_size, fit_func, iterations) {
|
|
population <- ea.init_population(range, population_size, runif)
|
|
|
|
df <- data.frame(i=integer()
|
|
,max=numeric()
|
|
,median=numeric()
|
|
,min=numeric())
|
|
|
|
for(i in 1:iterations) {
|
|
population <- ea.iterate(delta, population, fit_func)
|
|
|
|
df[nrow(df) + 1,] <- c(i
|
|
,population[1]
|
|
,population[length(population) %/% 2]
|
|
,population[length(population)]
|
|
)
|
|
}
|
|
|
|
df["max_val"] <- fit_func(df$max)
|
|
df["median_val"] <- fit_func(df$median)
|
|
df["min_val"] <- fit_func(df$min)
|
|
|
|
res <- list(population, df)
|
|
names(res) <- c("population", "df_tr")
|
|
|
|
return(res)
|
|
}
|
|
|
|
ea.traces <- function(range, deltas, population_size, fit_funcs, iterations) {
|
|
df <- data.frame(i=integer()
|
|
,max=numeric()
|
|
,median=numeric()
|
|
,min=numeric()
|
|
,delta_func=character()
|
|
,delta=numeric()
|
|
,fit_func=character())
|
|
|
|
for(delta_func in names(deltas)) {
|
|
delta <- deltas[[delta_func]]
|
|
|
|
for(fit_name in names(fit_funcs)) {
|
|
fit <- fit_funcs[[fit_name]]
|
|
|
|
print(delta_func)
|
|
tmp_df <- ea.trace(range, delta, population_size, fit, iterations)$df_tr
|
|
|
|
tmp_df["delta_func"] <- delta_func
|
|
if(delta_func == "delta.gaus") {
|
|
tmp_df["delta"] <- NA
|
|
} else {
|
|
tmp_df["delta"] <- delta()
|
|
}
|
|
|
|
tmp_df["fit_func"] <- fit_name
|
|
|
|
df <- rbind(df, tmp_df)
|
|
}
|
|
}
|
|
|
|
return(df)
|
|
}
|
|
|
|
ea.plot <- function(range, delta, population_size, fit_func, iterations) {
|
|
res <- ea.trace(range, delta, population_size, fit_func, iterations)
|
|
|
|
df_vals <- melt(res$df_tr[c("i", "min_val", "median_val", "max_val")], id.vars="i")
|
|
|
|
p <- ggplot(data=df_vals, aes(x=i)) +
|
|
geom_line(aes(y=value, linetype=variable))
|
|
|
|
return(p)
|
|
}
|
|
|
|
ea.run <- function(range, delta, population_size, fit_func, iterations) {
|
|
population <- ea.init_population(range, population_size, runif)
|
|
|
|
for(i in 1:iterations) {
|
|
population <- ea.iterate(delta, population, fit_func)
|
|
}
|
|
|
|
return(population)
|
|
}
|
|
|
|
ea.iterate <- function(delta, population, fit_func) {
|
|
children <- c()
|
|
|
|
for(individual in population) {
|
|
children <- append(children, ea.mutate(individual, delta))
|
|
}
|
|
|
|
population <- append(population, children)
|
|
|
|
return(ea.select(population, fit_func))
|
|
}
|
|
|
|
ea.mutate <- function(individual, delta) {
|
|
sign <- sample(c(-1,1), 1)
|
|
|
|
return(individual + sign * delta())
|
|
}
|
|
|
|
ea.select <- function(population, fit_func) {
|
|
sorted_popul <- population[order(sapply(population, fit_func), decreasing=TRUE)]
|
|
return(sorted_popul[1 : (length(sorted_popul) %/% 2)])
|
|
}
|