|
|
Again, we start with simple one bit systems. Later, we'll see how to expand the following methods to full bit vectors/registers. In the deterministic single bit model above, the state transition of a bit $b$ in step $t$ is defined by $f_t(b) \in \{0,1\}$. Now, the transition function (or gate) is simply allowed to flip an unfair coin and either output 0 or 1 for heads or tails respectively. Of course, the state of $b$ prior to the transition should have an effect on the computation. That is, why we allow different (unfair) coins for either $b = 0$ or $b = 1$. To distinguish between deterministic and probabilistic transition functions, we will denote the latter by $\ptrans(b) \in \{0,1\}$. Or to reformulate this idea: Depending on the value of $b$, the output of $\ptrans(b)$ follows one of two Bernoulli trials. There are 4 possible transitions with probabilities $p_{00}$, $p_{01}$, $p_{10}$ and $p_{11}$, where $p_{ij}$ is the probability of $b$ transitioning form $i$ to $j$. Obviously, $\sum_j p_{ij} = 1$ always needs to be satisfied. |
|
|
Again, we start with simple one bit systems. Later, we'll see how to expand the following methods to full bit vectors/registers. In the deterministic single bit model above, the state transition of a bit $b$ in step $t$ is defined by $f_t(b) \in \{0,1\}$. Now, the transition function (or gate) is simply allowed to flip an unfair coin and either output 0 or 1 for heads or tails respectively. Of course, the state of $b$ prior to the transition should have an effect on the computation. That is, why we allow different (unfair) coins for either $b = 0$ or $b = 1$. To distinguish between deterministic and probabilistic transition functions, we will denote the latter by $\ptrans(b) \in \{0,1\}$. Or to reformulate this idea: Depending on the value of $b$, the output of $\ptrans(b)$ follows one of two Bernoulli trials. There are 4 possible transitions with probabilities $p_{00}$, $p_{01}$, $p_{10}$ and $p_{11}$, where $p_{ij}$ is the probability of $b$ transitioning form $i$ to $j$. Obviously, $\sum_j p_{ij} = 1$ always needs to be satisfied. |