Browse Source

linear transition -> linear transformation

main
Tom Krüger 1 year ago
parent
commit
9b7cfa678a
2 changed files with 1 additions and 1 deletions
  1. BIN
      main.pdf
  2. +1
    -1
      main.tex

BIN
main.pdf View File


+ 1
- 1
main.tex View File

@ -239,7 +239,7 @@ The defining property of a superposition is the probability distribution of its
\end{proof} \end{proof}
\subsection{Transition Matrices} \subsection{Transition Matrices}
It follows directly from \cref{eq:exp_state_single_bit} that $\ptrans : \spanspace\parens{\mathbf{B}} \to \spanspace\parens{\mathbf{B}}$ is a linear transition on the space spanned by state basis $\mathbf{B}$ and \cref{thm:superpositionsClosedUnderProbabilisticTransition} even states that $\ptrans : \mathbf{B}^n \to \mathbf{B}^n$ and $\mathbf{B}^n$ is closed under $\ptrans$. It is well known, that the space of all linear maps $\Hom_{\R}\parens{V,W}$ between two finite-dimensional real vector spaces $V$ and $W$ is isomorphic to $\R^{\parens{\dim(W), \dim(V)}}$. So, there must exist an isomorphism between transition functions $\ptrans$ and $\R^{\parens{N,N}}$.
It follows directly from \cref{eq:exp_state_single_bit} that $\ptrans : \spanspace\parens{\mathbf{B}} \to \spanspace\parens{\mathbf{B}}$ is a linear transformation on the space spanned by state basis $\mathbf{B}$ and \cref{thm:superpositionsClosedUnderProbabilisticTransition} even states that $\ptrans : \mathbf{B}^n \to \mathbf{B}^n$ and $\mathbf{B}^n$ is closed under $\ptrans$. It is well known, that the space of all linear maps $\Hom_{\R}\parens{V,W}$ between two finite-dimensional real vector spaces $V$ and $W$ is isomorphic to $\R^{\parens{\dim(W), \dim(V)}}$. So, there must exist an isomorphism between transition functions $\ptrans$ and $\R^{\parens{N,N}}$.
\begin{theorem}%[see \cite{Knabner}] \begin{theorem}%[see \cite{Knabner}]
\label{thm:probabilistic_matrix_representation} \label{thm:probabilistic_matrix_representation}
Let $\mathbf{B} = \parensc{\mathbf{b}_i}_{i=1}^N$ be a $n$-bit state basis and $\mathscr{B} = \parensc{\mathbf{v}_j}_{j=1}^N$ a basis of $\R^N$, then there exists a matrix $A = (a_{ij}) \in \R^{\parens{N,N}}$ such that Let $\mathbf{B} = \parensc{\mathbf{b}_i}_{i=1}^N$ be a $n$-bit state basis and $\mathscr{B} = \parensc{\mathbf{v}_j}_{j=1}^N$ a basis of $\R^N$, then there exists a matrix $A = (a_{ij}) \in \R^{\parens{N,N}}$ such that


Loading…
Cancel
Save