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Mention that transition functions / matrices need to be effectively computable by a
polynomial algorithm. Otherwise, the hard computations can be outsourced to the
preparation of the circuit. Consider a decision problem. The decision could be com-
puted in advance for each input and the transition matrix just writes a designated
bit: 1 for ACCEPT or 1 for REJECT

1 A Simple Computational Model
What are Qubits? That’s usually the first question getting addressed in any introduction
to quantum computing, for a good reason. If we want to construct a new computational
model, we first need to define the most basic building block: a single bit of information.
In classical computer science, the decision on how to define this smallest building block
of information seems quite straight forward. We just take the most basic logical fact:
either something is true or false, either 1 or 0. We have a name for an object holding this
information: a Bit. Let’s envision a computational model based on logical gates. Such
a gate has one or more inputs and an output, with each either being true or false. Now
consider a bit b and a gate f : {0, 1} → {0, 1}. We have a bit of information b and can
get another bit of information b′ := f(b). In a final third step, we introduce a timescale,
which means that now our bit of information is time dependent. It can have different
values at different times. To make it easier, we choose a discrete timescale. Our Bit b
has a distinct value on each point on the timescale. A value of a bit can only be changed
in between time steps, by applying a logical gate to it:

Bit b
f1→ b

f2→ · · · → b
fk→ b

time t0 → t1 → · · · → tk−1 → tk

Of course, we need more than one bit of information, if we want to be able to perform
meaningful computations. For this, we simply look at a list, vector or register of bits
b ∈ {0, 1}n and modify our gates to be functions f : {0, 1}n → {0, 1}n mapping from
bit vectors to bit vectors.

Let’s recap: We’ve now designed a computational model with just three components.
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• A notion of Information: bits and registers.

• A way of reasoning: logical gates.

• A dimension to do the reasoning in: the timescale

Notice how the system described above is fully deterministic. The state bl of our
system at time tl recursively defined by:

bl =
{
fl(bl−1) if l > 0
b0 otherwise

Or by the composition of all gate applications up to this point: (fl ◦ fl−1 ◦ · · · ◦ f1)(b0).
Actually, a composition of gates is also just another logical gate F := (fl ◦fl−1 ◦· · ·◦f1) :
{0, 1}n → {0, 1}n. If we are not interested in intermediate states, we can thus define our
computation in the form of bout := F (bin)‘, with ‘F : {0, 1}n → {0, 1}n.

2 A Bit of Randomness
2.1 Single Bits in Superposition
Many real world problems are believed to not be efficiently solvable on fully deterministic
computers like the model described above (if P ̸= NP). Fortunately, it turns out that
if we allow for some randomness in our algorithms, we’re often able to efficiently find
solutions for such hard problems with sufficiently large success probabilities. Often
times, the error probabilities can even be made exponentially small. For this reason, we
also want to introduce randomness into our model. Algorithms or computational models
harnessing the power of randomness are usually called probabilistic.

Again, we start with simple one bit systems. Later, we’ll see how to expand the
following methods to full bit vectors/registers. In the deterministic single bit model
above, the state transition of a bit b in step t is defined by ft(b) ∈ {0, 1}. Now, the
transition function (or gate) is simply allowed to flip an unfair coin and either output
0 or 1 for heads or tails respectively. Of course, the state of b prior to the transition
should have an effect on the computation. That is, why we allow different (unfair)
coins for either b = 0 or b = 1. To distinguish between deterministic and probabilistic
transition functions, we will denote the latter by δ(b) ∈ {0, 1}. Or to reformulate this
idea: Depending on the value of b, the output of δ(b) follows one of two Bernoulli trials.
There are 4 possible transitions with probabilities p00, p01, p10 and p11, where pij is the
probability of b transitioning form i to j. Obviously, ∑j pij = 1 always needs to be
satisfied.

p00 := P (δ(b) = 0 | b = 0)
p01 := P (δ(b) = 1 | b = 0)
p10 := P (δ(b) = 0 | b = 1)
p11 := P (δ(b) = 1 | b = 1)
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Note that we regain our deterministic transition function f from δ, if we restrict the
probabilities: p00, p10 ∈ {0, 1}. At this point, we can randomize our computation from
above as follows:

Bit b
δ1→ b

δ2→ · · · → b
δk→ b

time t0 → t1 → · · · → tk−1 → tk

Let’s have a look at the state of b after the first transition. In the deterministic model,
we know with certainty that at this point in time, b will have the value f1(b). In a
probabilistic model, we can not predict the value of b at time t1 with 100% certainty. In
the terminology of probability theory, a probabilistic state transition or even the whole
computation would be an experiment and the value of bit b at time t would be described
by a random variable Xt. Random variables are defined to take a value out of a set of
predefined value options Ω = {ω1, . . . , ωn} with certain probabilities p1, . . . , pn for each
value. Only after we perform the experiment and observe its outcome, we get a specific
value xt of the random variable Xt. We say that xt is a random sample or realization of
Xt. If we don’t want to or can’t sample (perform) the experiment, we still could compute
the expected value E(Xt) = ∑

i piωi (if Ω mathematically allows for such operations).
Let’s return to our example: Just as in the deterministic case we would like to predict

the state of b after the transition δt. For this we want to calculate the expected state of
b at time t. Let pt

ij be the transition probabilities of δt, furthermore pt
b=x denotes the

probability of b being in state x at time t. Now we have:

E(δt(b)) = pt
b=0 · 0 + pt

p=1 · 1 (1)

pt
b=x =

{
pt

0x · pt−1
b=0 + pt

1x · pt−1
b=1 , t > 0

0, 1 otherwise
(2)

It is important to note, that 0 and 1 in eq. (1) are not the scalar values of b. They define
abstract objects denoting the fact that b is in state 0 or 1, so they are just arbitrary
labels. For instance, same states could also be labeled {T,F} or {⊤,⊥}. But if 0 and 1
are some kind of abstract object and not scalar value, how can eq. (1) be evaluated? As
of now it can’t. Later we will define representations of these abstract stats, which are
closed under addition and scalar multiplication, making eq. (1) also (a representation
of) an abstract state.

From eq. (1), we will now derive a standard form of our random bit b. We don’t view
b as being either in state 0 OR 1 anymore. From now on, we think of b as being in 0
AND 1 simultaneously with certain probabilities pb=0 and pb=1, The one bit system b is
in a superposition of two basis states 0 and 1:

b = p00 + p11 , p0 + p1 = 1

Until now, we have not given an explicit definition of the transition function δ, apart
from describing its effect. This is partly the case because we were lacking a formalism to
describe uncertain states, so there was no direct way to describe the output of δ(b). The
other big problem would have been the question of how to handle an uncertain input
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state. Building on the superposition formalism δ(b) can be defined as a linear function:

δ(b) = δ(p00 + p11)
= p0δ(0) + p1δ(1)
= p0(p000 + p011) + p1(p100 + p111)
= (p0p00 + p1p10)︸ ︷︷ ︸

=:p′
0

0 + (p0p01 + p1p11)︸ ︷︷ ︸
=:p′

1

1

A simple calculation verifies that

p′
0 + p′

1 = (p0p00 + p1p10) + (p0p01 + p1p11)
= p0 (p00 + p01)︸ ︷︷ ︸

=1

+p1 (p10 + p11)︸ ︷︷ ︸
=1

= p0 + p1 = 1

and thus δ preserves valid superpositions, which finally makes predictions of the full
computation through all steps possible. In line with the fully deterministic model the
state of b at time t can be described by:

bt =
{
δt(bt−1) if t > 0
b0 ∈ {0,1} otherwise

= (δt ◦ δt−1 ◦ · · · ◦ δ1)(b0)
(3)

2.2 Collapsing Superpositions
Extending this formalism to bit registers is actually fairly straight forward. Systems can
be in superposition of arbitrary many basis states. But first, it is time to talk a bit more
about the concept of superposition.

Definition 1 (Superposition of Probabilities). If E := {E1, E2, . . . , En} is the set of
all possible outcomes of an experiment, then a superposition of probable outcomes is
defined by:

E :=
n∑

i=1
piEi with pi = P (Ei) and

n∑
i=1

pi = 1 (4)

The states (outcomes) in E are called basis states (outcomes).

As mentioned above, a superposition can not immediately be evaluated. It rather
should be seen as a mathematical object holding incomplete knowledge about a certain
property of some (stochastic) process, described by a random distribution (pi)n

i=1. Too
actually evaluate a superposition, the missing information needs to be filled in by some
kind of extra process e.g. performing an experiment, measuring an observable. After
this extra information is filled in the property under consideration is fully known and the
superposition collapses to one of the actually realizable outcomes in E. In this model a

4



system can be in an uncertain state which only can be made concrete by some external
influence like measuring an observable. This sounds quite abstract and especially the
fact that a measurement could alter the state of a real physical system seems quite
counterintuitive, but we will later see that this principle is actually grounded in reality.

Let’s consider the experiment of rolling a dice. Of course, for the observable number
of eyes the expected outcomes are E = {1, 2, . . . , 6}. While the dice is still in the cup
and in the state of being shaken number of eyes can not be reasonably determined, even
if a transparent cup is being used. The dice is in a superposition E = ∑6

i=1
1
6 i of showing

all numbers of eyes 1 to 6 with uniform probability 1
6 . In order to determine the number

of eyes thrown, the dice needs to rest on a solid base, such that one side is evidently
showing up. So by throwing the dice we interfere with the system by stopping to shake
the cup and placing the dice on a solid base (table). With the dice now laying on the
table it is clearly showing only one number of eyes. The superposition collapsed!

Definition 2 (Collapse of Superposition). A state in superposition of basis states E =
{E1, E2, . . . , En} can be evaluated by collapsing it on one of its basis states. This is done
by a measuring operator

ME

(
n∑

i=1
piEi

)
:= Ei with probability pi (5)

Remark 1. The basis states are not unique. To see this, consider the experiment of rolling
a dice. If the observable is the number of eyes we have the basis states Eeye = {i}6

i=1.
On the other hand, if the measurement is only supposed to distinguish between even
or odd numbers of eyes we have Eparity = {even, odd}. The corresponding measuring
operators are MEeye and MEparity .

2.3 Bit Registers in Superposition
Extending the probabilistic one-bit model from section 2.1 to bit registers is almost
trivial given the definitions from section 2.2. A n-bit register can be in N = 2n possible
states, giving rise to a superposition of N basis states for probabilistic register states.

Definition 3. The state of a n-bit register in a probabilistic computation is defined by
a superposition of all possible basis states B = {0,1}n = {0,1, . . . ,N − 1}.

b :=
N−1∑
i=0

pi · i with P (b = i) = pi (6)

Remark 2. It should be noted that the number representation {i}N−1
i=0 is defined as the

bit string {0,1}n in a base of 10. So it is just a shorter label for the state of a n-bit
register and NOT a scalar value.

Similar to section 2.1 the transition function δ can be defined on its effect on basis
states. For each transition the probabilities of transitioning from basis state i to basis
state j must be defined. The mapping between states in superposition will then be
defined linearly.
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Definition 4. Let b = ∑N−1
i=0 pii be a n-bit register as defined in definition 3 and let pij

be the probability of transitioning form basis state i to basis state j, then the transition
function is defined by:

δ(b) :=
N−1∑
i=0

piδ(i) =
N−1∑
i=0

N−1∑
j=0

pipijj (7)

Theorem 1. A transition function as defined by definition 4 maps superposition to valid
superpositions.

Proof. Let δ be a probabilistic transition function and let b a register state in super-
position. By definition 4 we get δ(b) = ∑N−1

i=0
∑N−1

j=0 pipijj a simple reordering leads
to

δ(b) =
N−1∑
j=0

(
N−1∑
i=0

pipij

)
j

Obviously, pipij = P (b = i)P (δ(b) = j | b = i). It follows directly from the law of total
probability that ∑N−1

j=0
∑N−1

i=0 pipij = ∑N−1
j=0 P (δ(b) = j) = 1

A direct consequence of theorem 1 is that the space of probabilistic transition functions
is also closed under composition. In accordance to eq. (3) the state of a register b in a
probabilistic computation at time t can be described by:

bt =
{
δt(bt−1) if t > 0
b0 ∈ {0,1}N otherwise

= (δt ◦ δt−1 ◦ · · · ◦ δ1)(b0)
(8)

3 Introducing: Linear Algebra
The definitions of section 2 fully describe a probabilistic computational model. Unfor-
tunately, working with them can be quite cumbersome. This section will introduce an
algebraic apparatus based on the definitions from above, with many helpful tools to de-
scribe computations and state evolutions. As some terminology and especially the linear
properties of definition 4 already suggest the mathematical framework of choice will be
linear algebra. Let’s start by assessing the components of the model described above.
We have:

• States (in superposition)

• State transitions

• Measurements (collapse of superposition)

As it turns out, all three components and their interactions can be expressed in the
language of linear algebra. Readers familiar with that field of mathematics probably
already noticed that δ is a linear function and the space of states in superposition looks
a lot like a vector space.
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3.1 The State Space
The defining property of a superposition is the probability distribution of its basis states.
Given an enumeration all basis states the superposition is fully defined by the list of
probabilities (p0, p1, . . . , pN−1).

Definition 5 (State Spaces of Probabilistic Computations). Given a state basis B of a
n-bit register, the state space of probabilistic computations on this register is defined as:

Bn :=
{

b =
N−1∑
i=0

pii
∣∣∣∣∣ pi ∈ R+ ,

N−1∑
i=0

pi = 1
}

Definition 6. The coordinate map is a linear function ΨB : Bn → RN mapping the
state space to RN :

∀b ∈ Bn : ΨB(b) = (p0, p1, . . . , pN−1)T =
N∑

i=1
piei

Often ΨB(b) is called the coordinate vector of b with respect to the basis B.

Lemma 1. The state space of probabilistic computations is isomorphic to the surface of
the unit sphere in the first quadrant of RN .

Bn ∼=
{

v ∈ RN
+

∣∣∣ ∥v∥ = 1
}

Proof. For an arbitrary state b the coordinate vector ΨB(b) = v is the direction of a
ray in the first quadrant of RN starting from the origin. Rescaling v results in the point
where this ray intersects the unit sphere φ(v) = v

∥v∥ = v′ which can be inverted by
φ−1(v′) = v′

∥v′∥1
= v. Thus, φ ◦ φ−1 = φ−1 ◦ φ = id and

ΨB(Bn) = {v ∈ RN
+ | ∥v∥1 = 1} ∼= {v ∈ RN

+ | ∥v∥ = 1}

3.2 Transition Matrices
It follows directly from eq. (1) that δ : span(B) → span(B) is a linear transformation on
the space spanned by state basis B and theorem 1 even states that δ : Bn → Bn and Bn

is closed under δ. It is well known, that the space of all linear maps homR(V,W ) between
two finite-dimensional real vector spaces V and W is isomorphic to R(dim(W ),dim(V )). So,
there must exist an isomorphism between transition functions δ and R(N,N).

Theorem 2. Let B = {bi}N
i=1 be a n-bit state basis and B = {vj}N

j=1 a basis of RN ,
then there exists a matrix A = (aij) ∈ R(N,N) such that

• ∀bi ∈ B : δ(bi) = ∑N
j=1 ajivj
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• δ
(∑N

i=1 xibi

)
= ∑N

j=1 yjvj ⇐⇒ A(x1, x2, . . . , xN )T = (y1, y2, . . . , yN )T

Remark 3. Usually it is custom to choose the standard basis {ei}N
i=1 for RN , then theo-

rem 2 describes how A can be used to describe how δ affects basis states in coordinate
space. The j-th column vector Aej = aj = (a1j , a2j , . . . , aNj)T represents the proba-
bility distribution of δ(bj). It follows that aij = pji, with pji being the probability of
transitioning from bj to bi. Consequently, A = P T with P = (pij).

3.3 Measurements
The final component that sill needs to be expressed in the framework of linear algebra
are measurements. Let’s go back and think about what measuring actually means in
our case. The computational model described in section 2 provides a macroscopic view
of randomized computations. The result of such a randomized computation will be a
random state. Usually it is only of interest if a computation outputs a desired state given
a specific input, which entails the correctness of said computation. For randomized com-
putations, such an analysis requires the final random state distribution. Superposition
states are exactly that. Asking ”How likely is it to end up in state k?” corresponds to
measuring the quotient of k in the final superposition b. In the framework of linear
algebra this means calculating the scalar product (k . b).

Definition 7. Let b := ∑N
i=1 pibi ∈ Bn with basis states {bi}N

i=1, then there exist N
operators M̂k : Bn → [0, 1]

• in state space: M̂k(b) = (bk . b) = pk

• in coordinate space: Mk = bt
k ∈ R(1,N), Mkb = bt

kb With bt being the trans-
posed vector of b ∈ RN

3.4 Tensor Product
motivate, combining (state) vector spaces, stochastic matrices closed under kronecker
product

4 Making it Quantum
Section 3 formulates mathematical tools to algebraically describe an abstract model of
probabilistic computations defined in section 2. This section takes a reverse approach.
The tools developed in section 3 are based on stochastic matrices, which is an obvi-
ous choice to model probabilistic state transitions. Unfortunately this model has some
shortcomings. This section first highlights these inconveniences and then fixes them. By
doing so the model will gain in computational power, demonstrated by the implementa-
tion of Deutsch’s algorithm. Finally, it will be shown that this extended model is indeed
physically realizable.
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4.1 Cleaning Up
The straight forward and rather simplistic choice of using probability coefficients in
definitions 3 and 5 results in quite unwieldy state objects especially in the linear algebra
representation. Of course, the probability mass of a complete sample space must always
sum up to 1, demanding the normalization of state vectors by the ∥.∥1 norm. The state
space Bn defined in this way is an affine combination of its basis vectors. For an 1-bit
system this corresponds to the line segment from 0 to 1 (see fig. 1a). As lemma 1
already suggest, randomized computations could be viewed as rotating a ray around the
origin. If computations essentially are rotations, then angles between state vectors seem
somewhat important. Of course with a,b ∈ Bn it would be possible to calculate the
angle between both sates by rescaling their dot product by their lengths 0t1(|a||b|)−1.
State vectors with unit length would greatly simplify angle calculations. Then, the dot
product would suffice. Fortunately, lemma 1 states that Bn is isomorphic to a subset
of the surface of the unit sphere. Therefore, it should also be possible to represent the
state space as vectors with unit length. To distinguish between both representation we
will write state vectors with coordinates on the unit sphere as |b⟩. This notation is
the standard notation of quantum states. For now, ⟨b| will be the transposed vector of
|b⟩ and ⟨b1|b2⟩ = ⟨b1| |b2⟩ is the dot product of |b1⟩ and |b2⟩. By definition the length
of |b⟩ = ∑N

i=1 αi |bi⟩ is 1. The linear coefficients αi are not probabilities but so-called
probability amplitudes and the Pythagorean theorem states that 1 = ∑N

i=1 α
2
i . This

means squaring the amplitudes or taking the square root of probabilities maps between
affine combinations of basis vectors and points on the unit sphere in the state space. As
it turns out negative amplitudes must be allowed, thus this mapping is ambiguous and
NOT an isomorphism. Each point on the unit sphere describes exactly one possible state
of a probabilistic computation. This means moving on the 2n-dimensional unit sphere
can be viewed as a kind of computation on a state space Bn

R

Definition 8 (Real State Space). Given a mapping π : B → (0, 1)n of each configuration
of a n-bit register to an orthonormal basis B of RN with N = 2n, points on the N -
dimensional unit sphere form a computational state space:

Bn
R :=

{
|b⟩ =

N∑
i=1

aibi ∈ RN

∣∣∣∣∣ ∥|b⟩∥ = 1, bi ∈ B

}
with

a2
i = P (π(bi))

4.2 Orthogonal Operators
The set of operations mapping Bn

R to Bn
R is exactly the set of all rotations and rotore-

flections, which together form the orthogonal group. Every element of the orthogonal
group can be represented by an orthogonal matrix.
Definition 9. A matrix A ∈ Rn is orthogonal iff

A−1 = At ⇔ AAt = AtA = 1
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0

1

B1
b p0

p1

(a) todo

|0⟩

|1⟩

B1

α0

α1

|b⟩

b
α2

0

α2
1

(b) todo

Remark 4. It is important that orthogonal matrices from a group, because this means
the composition of two orthogonal operators is orthogonal again. So, orthogonal compu-
tation can be composed or decomposed by or into other orthogonal computations. This
is extremely useful for describing and developing algorithms in this model.

Definition 10 (Orthogonal Computation). A computation on the state space Bn
R is

defined by an orthogonal matrix A ∈ RN with N = 2n.

What does it mean if a matrix is orthogonal? Let A = (aij) = (ai, . . . ,an) ∈ R(n,n) be
orthogonal with. Then, it follows directly from AAt = (bij) = 1 that bij = at

iaj = δij .
Hence, the columns (and rows) of A form an orthonormal basis of Rn. It is also easy to
check that A preserves the dot product making it angle and length preserving. Another
direct consequence of AAt = 1 is the reversibility of orthogonal computations.

4.3 Measurements
The measurement operators of section 3.3 obviously also need to be adjusted to the new
state space and also suffered from some shortcomings. The dot product operators of
definition 7 completely leave the state space when applied to a state vector. But the
most important reason for why to redesign measurements are the newly used probably
amplitudes. Just extracting an amplitude and squaring it would of course be a possible,
but alien solution to the linear framework developed so far. This is because squaring is
not linear. The desired goal is to design a linear operator nicely fitting in the framework
at hand.

Definition 11 ((Real) Measurement Operators). Let Ω be the set of possible outcomes
of an experiment. Then the corresponding measurement is described by a set of linear
operators {Mm}m∈Ω ⊂ R(N,N) with:
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• P (m) = ⟨b|M t
mMm|b⟩

• ∑
m P (m) = ∑

m ⟨b|M t
mMm|b⟩ = 1 ⇔

∑
mM t

mMm = 1

and |b⟩ ∈ Bn
R

4.3.1 (Real) Projective Measurements

One of the most important special cases of measurement operators are projective mea-
surements. As the name already suggests, projective measurements are linear projections
onto subspaces of Bn

R.
content

4.4 Interference - Computational Power
So far, moving computations on affine combinations to points on the unit sphere had
merely subjective and rather esoteric reasons to clean up an abstract description of a
computational model. In short: It’s mathematically nicer to move around on the unit
sphere. This section shows, that utilizing the power of probably amplitudes one actually
gains computational power compared to the previous model.

4.4.1 Reversing a Coin Flip

In the classical probabilistic model a coin flip destroys any information stored in a bit,
even in superposition states. It is easy to verify that P1/2 = 1

2
( 1 1

1 1
)

indeed implements a
1-bit coin flip and satisfies the conditions of theorem 2. Two consecutive coin flips are
independent, which is illustrated by P1/2P1/2 = P1/2. The coin flip applied to an arbitrary
superposition b = p0b0 + p1b1 yields:

P1/2b = p0
1
2(b0 + b1) + p1

1
2(b0 + b1) = (p0 + p1)1

2(b0 + b1) = 1
2(b0 + b1)

Given any input state P1/2 reaches a fixed point after one iteration. With P1/2 not
being orthogonal a different operator is needed for the orthogonal model, which is the
Hadamard operator.

Definition 12 (Hadamard Operator).

H = 1√
2

(
1 1
1 −1

)
(9)

The Hadamard operator is basically the same as P1/2 but the global factor is adjusted
for probability amplitudes and the matrix columns are made orthogonal by introducing
a negative phase in the second column. Exactly this negative phase will have some
surprisingly useful effects. It is easy to see that

P (H |b⟩ = |0⟩) = P (H |b⟩ = |1⟩) = ⟨b|H†M|0⟩H |b⟩ = ⟨b|H†M|1⟩H |b⟩ = 1
2
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for |b⟩ ∈ {|0⟩ , |1⟩}, M|0⟩ = |0⟩⟨0| and M|1⟩ = |1⟩⟨1|. So, H does indeed implement a fair
coin flip. But contrary to P1/2 the Hadamard operator does not destroy the information
stored in a superposition.

H(a0 |0⟩ + a1 |1⟩) = a0√
2

(|0⟩ + |1⟩) + a1√
2

(|0⟩ − |1⟩)

= 1√
2

((a0 + a1) |0⟩ + (a0 − a1) |1⟩)
(10)

Actually, applying H a second time completely reverses the computation, this is the
result of HH = 1 and might seem strange at first but is in fact a trivial consequence of
orthogonal operators representing rotations and rotoreflections, which both are obviously
reversible. Thus, the first H can not have destroyed any information. It is interesting to
look into how something like that happens. After the second H application the state is:

1
2((a0 + a1)(|0⟩ + |1⟩) + (a0 − a1)(|0⟩ − |1⟩))

= 1
2((a0 + a0 + a1 − a1) |0⟩ + (a0 − a0 + a1 + a1) |1⟩) = a0 |0⟩ + a1 |1⟩ (11)

The key observation can already be made in eq. (10). Probability amplitudes can de-
structively interfere with each other. In eq. (10) this can be seen in the term (a0 − a1)
and in eq. (11) the amplitudes cancel each other out just perfectly to restore the original
input state. It can’t be mentioned enough: probability amplitudes are not probabilities.
Destructive Interference is not possible with stochastic matrices from section 3 with all
their entries being strictly positive. The next section shows how interference effects can
be utilized effectively to outperform any probabilistic computation.

4.4.2 Deutsch’s Algorithm

Given a function f : {0, 1} → {0, 1}, the problem at hand is to determine whether
f(0) ?= f(1). Obviously, deterministic and even probabilistic computations need to
evaluate f two times, once for each input, in order to answer this question. Surprisingly,
orthogonal computations only need one call to f . But how is that possible?

First, function evaluation needs to be addressed in the context of orthogonal com-
putations. The requirement of orthogonality requires all computations to be reversible.
But what if f is not injective e.g. f(0) = f(1)? Well, a simple trick solves this dilemma:
Instead of evaluating f directly, f will be wrapped by an orthogonal operator Of . Note
that the XOR operator:

|x⟩ |x⟩

|y⟩ |y ⊕ x⟩
ˆXOR =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


is reversible as XOR |x, y ⊕ x⟩ = |x, y ⊕ x⊕ x⟩ = |x, y⟩. From the matrix form it ap-
parent that Of even is orthogonal. Similarly, it follows that Of |x, y⟩ := |x, y ⊕ f(x)⟩ is
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reversible. A closer look reveals that Of just permutes the basis states depending on f
and again it is easily verifiable that OfOf = 1, making Of orthogonal.

|x⟩
Of

|x⟩

|y⟩ |y ⊕ f(x)⟩
Of =


1 − f(0) f(0) 0 0
f(0) 1 − f(0) 0 0

0 0 1 − f(1) f(1)
0 0 f(1) 1 − f(1)


So it is indeed possible to evaluate a function f : {0, 1} → {0, 1} in the orthogonal
computational model. If the second qubit |y⟩ is initialized as |0⟩, measuring that qubit
in the computational basis after the application of Of returns the value of f(x). The
trick that makes it possible to answer f(0) ?= f(1) with one call to Of is to initialize
both qubits in a perfect superposition of |0⟩ and |1⟩. Then, both values of f(0) and f(1)
will interfere |y⟩.

|0⟩ H

Of

H

|1⟩ H

|z1⟩ |z2⟩

So, now it is time to examen this circuit in detail to understand it’s inner workings.
After the first Hadamard gates the system is in state

|z1⟩ = 1
2((|0⟩ + |1⟩) ⊗ (|0⟩ − |1⟩))

= 1
2(|00⟩ − |01⟩ + |10⟩ − |11⟩)

applying Of changes the system state to

Of |z1⟩ = 1
2


(1 − f(0) − f(0)) |00⟩ +
(f(0) − 1 + f(0)) |01⟩ +
(1 − f(1) − f(1)) |10⟩ +
(f(1) − 1 + f(1)) |11⟩

 = 1
2


(−1)f(0) |00⟩ −
(−1)f(0) |10⟩ +
(−1)f(1) |01⟩ −
(−1)f(1) |11⟩


= 1

2

((
(−1)f(0) |0⟩ + (−1)f(1) |1⟩

)
⊗ (|0⟩ − |1⟩)

)
= |z2⟩

That is a lot to digest, but what happened is: Both qubits interfered with each other and
although f got applied to the second qubit, the effect of this operation moved through the
amplitudes to the first qubit. From now on the second qubit is not important anymore,
so only the first one will be considered from now on. The first bit viewed as an isolated
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system is in state 1/
√

2((−1)f(0) |0⟩ + (−1)f(1) |1⟩). Applying a Hadamard gate results in

H
1√
2

(
(−1)f(0) |0⟩ + (−1)f(1) |1⟩

)
=

1
2
(
(−1)f(0)(|0⟩ + |1⟩) + (−1)f(1)(|0⟩ − |1⟩)

)
=

1
2
(
(−1)f(0) |0⟩ + (−1)f(0) |1⟩ + (−1)f(1) |0⟩ − (−1)f(1) |1⟩

)
=

1
2
((

(−1)f(0) + (−1)f(1)
)

|0⟩ +
(
(−1)f(0) − (−1)f(1)

)
|1⟩
)

=
1
2(−1)f(0)

((
1 + (−1)f(0)⊕f(1)

)
|0⟩ +

(
1 − (−1)f(0)⊕f(1)

)
|1⟩
)

Now measuring the first bit returns |0⟩ iff f(0) = f(1) and otherwise |1⟩.
Apparently interference of amplitudes is truly a remarkable feature. There is a key

difference between probabilistic and orthogonal computations. In the probabilistic model
the concept of computation superposition merely models the lack of knowledge about
the true state of the system. If a system is in a probabilistic superposition of two states
the true state is just unknown but the system is only in one of the two states at any time.
The interference effects in orthogonal computations paint a different picture. In order
to interfere with each other the two sates in a orthogonal superposition must somehow
be present at the same time. The system has to be in both states, resulting a kind of
inherent parallelism built into the model! In Deutsch’s algorithm, the application of Of

to a superposition does in fact not equal one call to f but evaluating f in parallel for
both inputs.
rename qubits as the term is not yet defined

4.5 Entering the Real World: Quantum Computing
The best theoretical model is of no value if it relies on some kind of magic that not
be realized in the real world. Luckily if the real probability amplitudes of the orthogo-
nal model are replaced by complex numbers, one ends up with a computational model
which can perfectly described by quantum mechanics, thus making it a real world phys-
ical system, fittingly called quantum computing. Of course, real probability amplitudes
are a subset of complex probably amplitudes and likewise orthogonal computations are
a subset of quantum computations. Only minor adjustments need to be made to the
mathematical framework to handle complex amplitudes. The fundamental unit of infor-
mation is a qubit this special terminology is intended to highlight the special properties
of quantum superpositions. Also, oftentimes greek leters are used in the quantum case.

Definition 13 (Qubit). A qubit is a quantum superposition with unit length of two
orthonormal basis vectors |0⟩ and |1⟩:

|ψ⟩ = α |0⟩ + β |1⟩ (12)
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With the transposed complex conjugate of |ψ⟩ denoted as:
(|ψ⟩∗)t = |ψ⟩† = ⟨ψ| = ⟨0|α∗ + ⟨1|β∗ (13)

Furthermore, every qubit satisfies the normalization criterion:
⟨ψ|ψ⟩ = α∗α+ β∗β = |α|2 + |β|2 = 1 (14)

Remark 5. In accordance with the standard in quantum computing literature the com-
putational basis states |0⟩ and |1⟩ where chosen for in definition 13. However, similarly
to orthogonal matrices, unitary matrices (their complex extension) also map any com-
plex orthonormal basis to another complex orthonormal basis of the same dimension.
Also, every bijective mapping of two complex orthonormal bases is a unitary opera-
tion. So, any qubit can be transformed to another basis by simply applying a unitary
transformation to it, making the basis choice of a qubit irrelevant.
Definition 14 (Computational Basis). The standard bais of quantum computing is
the computational basis. The basis 2n values of a n-bit register are mapped to an
orthonormal basis B = {|i⟩}2n−1

i=0 , with i being the decimal value of the n-bit register. In
coordinate space |i⟩ is represented by ei ∈ C2n :

|i⟩ ∼= ei = (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0)t (15)

Definition 15 (Quantum State Space). Spanning a complex vector space over an ar-
bitrary set of 2n many orthonormal base vectors we get the state space of a n-qubit
system. The standard base of choice is the computational basis (definition 14), giving
the standard n-qubit state space B

Bn =
{

|ψ⟩ =
2n−1∑
i=0

αi |i⟩
∣∣∣∣∣ αi ∈ C, ⟨ψ|ψ⟩ = 1

}
Definition 16 (Unitary Operator). Unitary operators and matrices are the complex
extensions to orthogonal operators and matrices. An operator Φ is unitary if its matrix
representation UΦ is a unitary matrix, which is the case iff

U−1
Φ = U †

Φ ⇔ UΦU
†
Φ = U †

ΦUΦ = 1

with U †
Φ being the transposed complex conjugate of UΦ, defined as

∀n ∈ N, A = (aij) ∈ Cn : A† = (a∗
ji)

Definition 17 (Unitary Computation). In accordance with definition 10, a computation
on the state space Bn is defined by a unitary matrix U ∈ C2n .
Definition 18 (Measurement Operators). The definition of measurements on quantum
state spaces follow the definition of measurements on orthogonal state spaces (defini-
tion 11), but with states |ψ⟩ ∈ Bn and complex operators {Mm}m∈Ω ⊂ C(N,N).

This wraps up the framework of quantum computing. Fortunately, definitions 15,
16 and 18 correspond to the fundamental postulates of quantum mechanics, meaning
that quantum computing with all its seemingly strange properties is in fact a physically
realizable computational model!
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4.6 Quantum Circuits
In theory, the framework introduced above should be enough to do quantum computa-
tion. All that needs to be done in order to develop a new algorithm is to come up with
its unitary matrix. At second glance, however, one notices quickly the impracticality
of this approach. It implies finding a 2n × 2n complex matrix with all required and
desired properties needed to solve a n-qubit problem. The standard praxis in quantum
algorithm design is to formulate the computation as a quantum circuit. The classical
pendant to this is the relationship between boolean functions f : {0, 1}n → {0, 1}m and
boolean circuits. Where f is realized by a circuit of cascading boolean primitive gates.
A similar situation arises in quantum computing, already illustrated by the description
of Deutsch’s algorithm in section 4.4.2. Here the complete algorithm is composed of
just Hadamard gates, function application gate Uf and one measurement. This makes
it way easyer to understand than just one bit unitary matrix. A quantum circuit just
allows though processes of the likes of: What operation performed when on which qubit?
Which is much more natural to the kind of algorithmic thinking people are usually used
to.

A quantum gate is just a unitary operator on a select set of qubits. Because they are
unitary, quantum gates always have the same number of input and output qubits, unlike
their boolean counterparts. Conceptual wires are used to connect the right qubits to
the inputs and outputs of each gate. Let U be a k-qubit gate in a n-qubit system, with
k < n. Then U can be extended to a n-qubit gate by calculating the tensor product of
U and a (n− k)-qubit identity matrix.

Definition 19. Let |x⟩ = |x1, . . . , xn⟩ be the n qubits of a quantum system and let U
be a k-qubit quantum gate, with k < n. The k-tuple I = (i1, . . . , ik) with il, ig ∈ [1, n]
and il ̸= ig for all l, g maps k qubits from |x⟩ to the inputs of U . Then,

Gn(U, I) := VπI (U ⊗ 1n−k)V †
πI

is the n-qubit extension of U , with VπI being a permutation matrix that satisfies

VπI |x1, . . . , xn⟩ = |xi1 , . . . , xik
, . . .⟩

and 1n−k is the identity operator on the remaining qubits.

Remark 6. Two gates U1 ∈ C2k1 and U2 ∈ C2k2 acting on I1 = (i11, . . . , i1k1
) and I2 =

(i21, . . . , i2k2
) respectively can be computed in parallel iff I1 ∩ I2 = ∅ and thus

Gn(U1, I1)Gn(U2, I2) = Gn(U1 ⊗ U2, I1I2) = VπI1I2
(U1 ⊗ U2 ⊗ 1n−(k1+k2))V †

πI1I2

with I1I2 being the concatenation of I1 and I2 and

VπI1I2
|x1, . . . , xn⟩ =

⊗
i1∈I1

|xi1⟩
⊗

i2∈I2

|xi2⟩
⊗

i∈[1,n]∩(I1∪I2)
|xi⟩
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Definition 20. A n-qubit quantum circuit is formally described by a sequence of gates
and input mappings C = (Ul, Il)m

l=1 with n = |
⋃m

l=1 Il|. Using definition 19, the circuit
description equals a unitary matrix according to definition 16:

UC = Gn(Um, Im) · · ·Gn(U1, I1) (16)

The circuit C is said to be maximally parallelized if all neighboring gate extensions
Gn(Ul, Il) and Gn(Ul+1, Il+1) with Il ∩ Il+1 = ∅ are reduced to Gn(Ul ⊗ Ul+1, IlIl+1).

Remark 7. If a quantum circuit C = (Ul, Il)m
l=1 is used in combination with bra-ket

notation sometimes out of convenience C |ψ⟩ instead of UC |ψ⟩ will be written. With
the latter being the formally correct application of Cs unitary matrix representation UC

according to eq. (16).

Definition 21. Given a quantum circuit C = (Ul, Il)m
l=1 then

• the size of C is the total number of gates m

• the depth of C is the number of unitary operator Gn in the maximally parallelized
form of C

In section 4.4.2 Deutsch’s Algorithm already was illustrated using an informal notion
of quantum circuits. Let UD be the unitary operator and CD the corresponding circuit
description of Deutsch’s algorithm before measuring the first qubit. The circuit CD has
a size of 4 and a depth of 3.

CD = (H, 1)︸ ︷︷ ︸
(U1,I1)

, (H, 2)︸ ︷︷ ︸
(U2,I2)

, (Of , (1, 2))︸ ︷︷ ︸
(U3,I3)

, (H, 1)︸ ︷︷ ︸
(U4,I4)

UD = G2(H, 1)G2(Of , (1, 2))G2(H, 2)G2(H, 1)︸ ︷︷ ︸
G2(H⊗H,(1,2))
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